Lower Thames Crossing

Thurrock Council Comments on Applicant's Submissions at Deadline 1 and 2 (D1 and D2)

Summary Review of National Highways Localised Traffic Modelling Report – Appendix E

Thurrock Council

Document Control Sheet

Project Name: Lower Thames Crossing

Report Title: Thurrock Council Comments on Applicant's Submissions at Deadline 1 and 2 (D1 and D2) – Summary Review of National Highways Localised Traffic Modelling Report – Appendix E

Doc Ref:

Date: August 2023

Contents

1	Intro	duction	. 1
	1.2	Document Purpose	. 1
2	Sumi	mary of Localised Traffic Models undertaken by NH	. 2
3		ew of Comparative Analysis of Findings of the Localised Traffic Modelling and /	. 3
4	Revie	ew Conclusions	. 5

Annexes

Annex 1	D3 Modelling Status Flowchart
Annex 2	Comparative Assessment of Journey Times
Annex 3	Orsett Cock VISSIM Model v1.5 and v2.4 Differences
Annex 4	Review of Base Year East-West Base Model
Annex 5	Review of Do Minimum and Do Something Orsett Cock VISSIM Models
Annex 6	The Manorway VISSIM Modelling, Comparison of Model Documentation September 2022 vs July 2023

thurrock.gov.uk

Thurrock Council Comments on Applicant's Submissions at Deadline 1 and 2 (D1 & D2) – Summary Review of National Highways Localised Traffic Modelling Report – Appendix E Lower Thames Crossing

this page is intentionally black

1 Introduction

1.1.1 This technical note provides a summary review of the National Highways (NH) report:

TRO10032-003072-9.15 Localised Traffic Modelling (REP1-189)

1.1.2 This is a newly published document on the PINS website for the Lower Thames Crossing (LTC) Development Consent Order (DCO). The document is dated July 2023.

1.2 Document Purpose

- 1.2.1 It is stated that the purpose of the document is to:
 - a. Set out the localised traffic modelling work completed by NH during the development of the A122 LTC; and
 - b. To introduce additional information into the Examination process.
- 1.2.2 It is further stated that the document sets out:
 - a. Context in which NH has undertaken localised traffic modelling;
 - b. The Responses to <u>Action Points 8, 9, 10</u> from Issue Specific Hearing 1 (ISH1) of 21 and 23 June 2023;
 - c. Provide a comparative analysis of the findings of the localised traffic modelling and the LTAM; and
 - d. Provide summary of localised traffic modelling completed, signposting to submitted detailed reports on modelling work.

2 Summary of Localised Traffic Models undertaken by NH

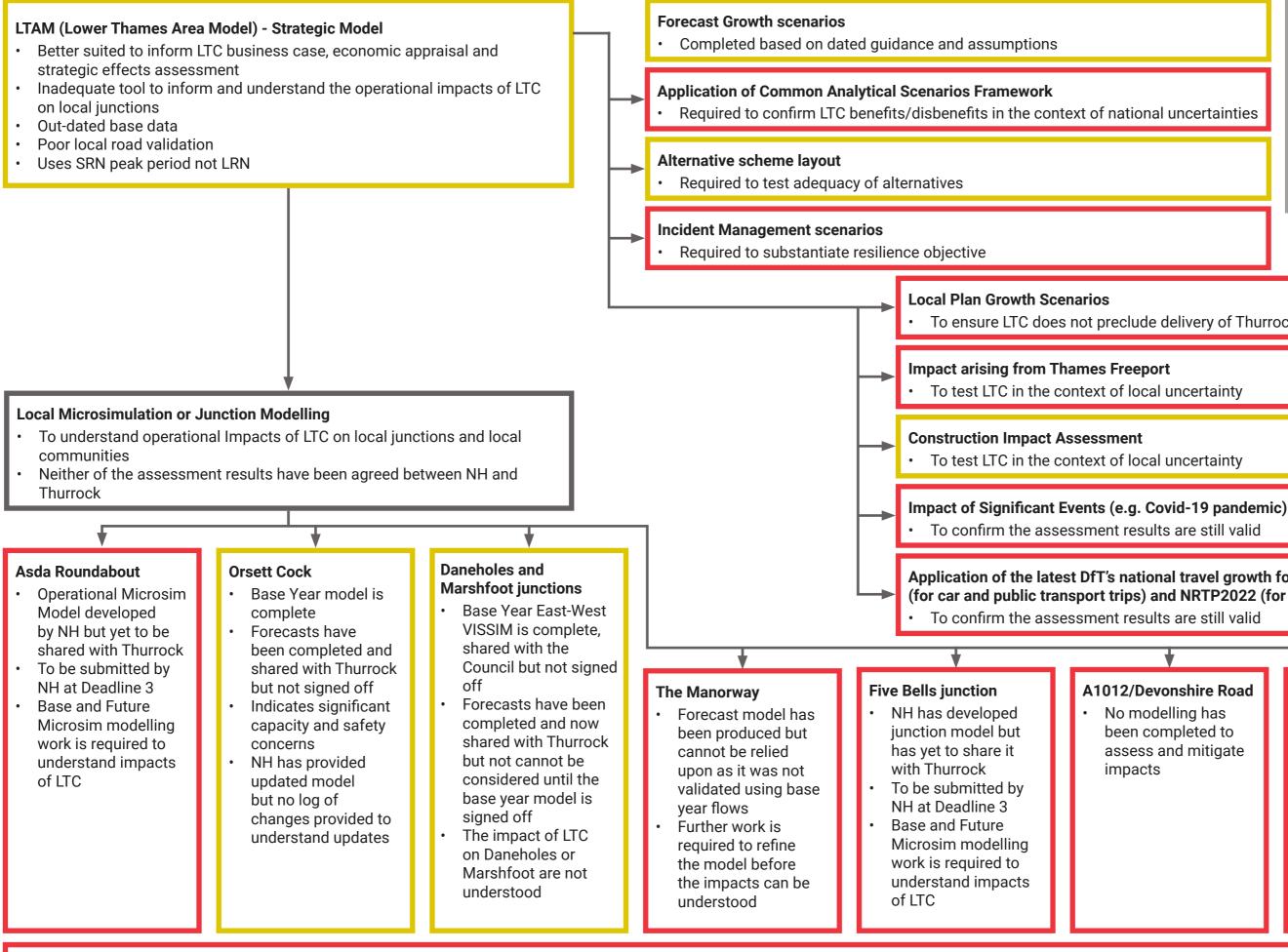
- 2.1.1 NH has summarised the various localised traffic models it has undertaken, and these were summarised in Table 3.1 and Table 3.2 of the report. Figure 9.1 of the Local Impact Report drawn up by Thurrock Council (the Council) summarised the position of the Council on the LTAM as well as microsimulation modelling by NH. This included both operational and construction modelling requirements.
 - a. Having reviewed the localised traffic modelling report, Annex 1 of this document provides a summary of whether the provided localised traffic modelling now provided by NH covers the models requested by the Council.
 - b. It is noted that only Operational localised traffic models have been provided. No Construction impact models have been provided. Separate work is being undertaken by the Council to review the provided models as to their robustness and adequacy and hence whether the Council's position on the provided models.
 - c. It is noted that NH proposes to submit the following additional localised traffic models into the Examination process by Deadline 3 (paragraph 5.1.2):
 - A1089 ASDA roundabout operational microsimulation model;
 - A13 Five Bells junction operational model;
 - A13 Pitsea interchange operational junction (not requested); and
 - A1089 ASDA roundabout microsimulation for critical construction traffic modelling phases.
- 2.1.2 The Council looks forward to receiving these models by Deadline 3 so that a better understanding of localised impacts at these locations can be gained.
- 2.1.3 It is noted from Paragraph 5.1.3 of the Localised Traffic Modelling report (<u>REP1-187)</u> that the only Construction localised transport modelling that NH is proposing to submit is the A1089 ASDA roundabout microsimulation model. NH argues that the use of LTAM is appropriate for the consideration of the construction impacts.
- 2.1.4 The Council does not agree with this view and considers that LTAM as a strategic model representing average hour conditions, underestimates local junction and network impacts and therefore expects NH to provide requested localised junction or microsimulation models. The comparative analysis undertaken by NH for operational VISSIM modelling at The Manorway and Orsett Cock junctions, contrary to NH assertions, actually in the main, show that impacts are predicted to be worse in localised models than in LTAM. This is discussed further below.

3 Review of Comparative Analysis of Findings of the Localised Traffic Modelling and LTAM

- 3.1.1 Section 4 of the document provides a comparative analysis of results comparing LTAM results to VISSIM results at the A13 Manorway junction (Tables 4.1 to 4.4) and at Orsett Cock junction (Tables 4.5 to 4.8)
- 3.1.2 It is noted that invariably the comparisons in the AM peak are provided for 0700 0800 and not the local 0800 0900 peak hour. The PM peak hour 1700 1800 is also compared.
- 3.1.3 The comparisons are provided for 2030 and 2045 DM and DS.
- 3.1.4 The comparisons have tabulated route flows (vehicles), distance (metres), journey times (seconds) and weighted journey times (minutes) on specified routes or Origin to Destination (OD) pairs.
- 3.1.5 It is acknowledged that length of journeys between LTAM and the microsimulation are not identical due to differing links and model structure. Our analysis indicates that in most cases, the VISSIM routes are shorter than the equivalent LTAM routes. This is invariably likely to skew the results and the conclusions.
- 3.1.6 NH has only tabulated absolute values but not the impact, i.e. how the difference in journey time between the DM and DS compares for LTAM and for microsimulation. The Council has undertaken analysis to understand consistency of impacts and provided tabulations in Annex 2 for Orsett Cock interchange and for The Manorway junction.
- 3.1.7 It is worth noting that the additional analysis by the Council has utilised the provided results in the NH report as they are. The Council has not signed off the localised models and is raising a number of critical errors with NH. An informed review of the modelling would be made once the modelling has been amended to reflect those errors and updated outcomes provided by NH.
- 3.1.8 For journey times and weighted journey times, our analysis has looked at the difference between DS and DM times for both LTAM and VISSIM. A positive figure implies a comparatively higher figure in time and a negative implies a comparatively lower figure.

Results

- 3.1.9 In paragraph 4.1.1 of the Localised Traffic Modelling report (<u>REP1-187)</u> NH states that the analysis it made demonstrates that the scale of the impacts on junctions in the LTAM results are similar to those forecast using microsimulation and shows that any differences would not lead to a change in the benefit cost ratio of the Project.
- 3.1.10 Given the limited number of junctions compared, and the differing purposes for which one would expect of the LTAM and localised junctions, the above statement is debatable. The main reason for requesting localised models has been to better understand local impacts and the Council's view, the results of the analysis in Appendix A.1 and A.2 show that in the main, changes in journey times are higher in the microsimulation models than in LTAM thus reinforcing the long stated view that LTAM as a strategic model, underestimates impacts. This is against a backdrop of predominantly shorter VISSIM routes compared to LTAM, which would only increase the difference between the journey time results if reconciled.
- 3.1.11 In The Manorway junction results, the limited number of routes analysed and the difference in journey time route length between the LTAM and VISSIM models, make a direct comparison


of journey times difficult. In most cases the VISSIM distances are much shorter for key routes compared to the LTAM routes. For example, Route 2 (assumed to be A13 mainline through The Manorway southbound) is 1,530 metres shorter in VISSIM. It is also noted that Route 1, assumed to be the A13 northbound equivalent route, at 2,687 metres in SATURN, is considerably shorter than Route 2 which is reported as 4,464 metres. This appears to be erroneous and there is concern that comparison is not like for like both in SATURN and when compared to VISSIM. There is also no journey time analysis presented at The Manorway junction for trips to and from the A103 arm of the junction, which is a key arm of the junction. Overall, there is little confidence in the accuracy of the analysis undertaken at the Manorway junction. There is no base model provided for The Manorway and so the Council is not in a position to comment on the validity of any of the models.

- 3.1.12 In the Orsett Cock junction results, the journey time and weighted journey time changes between the DS and DM clearly show that impacts are worse from the microsimulation than from LTAM. Even with generally shorter routes in VISSIM compared to LTAM, the increases in journey times on key routes or Origin – Destination (OD) movements indicate that the LTC would have any adverse impact at the Orsett Cock and that mitigation is required to offset these impacts. For example:
 - a. In 2030 AM peak, journey time increases are evident from Zone 1 (A128 North arm) in the VISSIM model to most destinations analysed and these range between increases of 68 seconds to 94 seconds. The LTAM changes where they occur are much smaller; and range between -29 seconds (a decrease) to 20 seconds.
 - b. In 2030 PM peak trips from Zone 1 also experience significant increases in time ranging between 48 and 87 seconds, compared to changes ranging from -17 seconds to 27 seconds for LTAM. Trips from Zone 2 (A13 East arm) experience even higher increases in time in VISSIM with the higher increases varying between 301 and 348 seconds. In LTAM the increases only range between 16 seconds and 52 seconds.
 - c. Needless to say, for trips from Zone 1 in both 2045 AM and 2045 PM peaks, conditions are predicted to deteriorate further, with the VISSIM models predicting much higher increases in times than LTAM. In 2045 AM peak, trips from Zone 1 in VISSIM are predicted to experience journey time increases between 88 seconds and 157 seconds while in LTAM, the range is from -40 seconds to 23 seconds. Trips from Zone 2 in the PM peak VISSIM model also experience a significant increase in time albeit the increases are noticeably lower than in 2030, this anomaly, likely indicating capacity constraints into the future. Although LTAM also predicts time increases for Zone 2 in 2045 PM peak, they are much lower than predicted by VISSIM. In VISSIM, the higher journey time increases from Zone 2 in 2045 PM ranges between 155 seconds and 206 seconds, while in LTAM increases vary between 27 seconds and 68 seconds.

4 Review Conclusions

- 4.1.1 In paragraph 2.2.3 of the Localised Traffic Modelling report (<u>REP1-187)</u>NH makes a number of statements summarised as follows:
 - a. That the information in the document demonstrates that the localised traffic modelling work supports and validates the findings of the LTAM
 - b. That the conclusions drawn from the LTAM about the overall performance of the project remain valid at a local level including:
 - The performance of individual junctions
 - The scale of traffic impacts and benefits, and by extrapolation, the scale of economic disbenefits and benefits at individual junctions
- 4.1.2 In paragraph 4.3.1 NH further states that:
 - a. The comparison of the modelled performance of the Orsett Cock and The Manorway junctions using two different modelling approaches gives similar results, which further provides confidence in the use of the LTAM for the appraisal of the Project.
- 4.1.3 The Council's review concludes that the above statements are not supported by NH's own comparative analysis and that the results of the microsimulation demonstrate that the impacts of the LTC are clearly worse in the localised models than in LTAM. This is particularly so at the Orsett Cock interchange where there appears to be a disparity in impact between the VISSIM and LTAM, with LTAM understating the time increases on key movements. This reinforces the need for microsimulation and junction models to better understand the impacts of the LTC on local communities. The impacts at Orsett Cock interchange in particular, point to a need for potential mitigation with the LTC in place.

Annex 1 D3 Modelling Status Flowchart

Known construction impacts - Local microsimulation or junction modelling is required to understand need for mitigation

The Manorway roundabout, Orsett Cock roundabout, ASDA roundabout (NH state that it is preparing A1089 Asda roundabout Microsim model to be shared at Deadline 3), Daneholes roundabout, Marshfoot Road/A1089 junction, Five Bells westbound merge with A13, A1012/Arterial Road North Stifford/Lodge Lane/ Long Lane roundabout, A1013/ Rectory Road junction, A128 Brentwood Road/ Prince Charles Avenue, A13/A1012 Gyratory in North Stifford, Grays, B149/ Chadwell Hill/ St Chads Road/ Marshfoot Road roundabout, Brentwood Road/ Heath Road, Muckingford Road/ Construction Haul Road, Southend Rd/ Lampits Hill, Station Road/ Love Lane, Stifford Road approach to B1335 Stifford Road

	Key
ional uncertainties	Completed and approved by the councilCompleted but not approvedNot completed

To ensure LTC does not preclude delivery of Thurrock's Local Plan

Application of the latest DfT's national travel growth forecasts using NTEM 8.0 (for car and public transport trips) and NRTP2022 (for LGV and HGV traffic)

A1012/Devonshire Road No modelling has been completed to assess and mitigate

Tilbury Junction

- No modelling to support future connection
- Further work is required to refine the operational junction

Change Log – Microsimulation and Junction Modelling

This document summarises changes to the Model Status flow-chart and aims to support version control.

Local Microsimulation or Junction Modelling

LIR status	D3 status
Asda Roundabout	Asda Roundabout
 No modelling has been completed to assess and mitigate impacts Microsim modelling work is required to understand impacts of LTC 	 Operational Microsim Model has been developed by NH but yet to be shared with Thurrock To be submitted by NH at Deadline 3 Base and Future Microsim modelling work is required to understand impacts of LTC
Orsett Cock	Orsett Cock
 Base Year model is complete Forecasts have been completed and shared with Thurrock but not signed off. Indicates significant capacity and safety concerns 	 Base Year model is complete Forecasts have been completed and shared with Thurrock but not signed off. Indicates significant capacity and safety concerns NH has provided updated model but no Log of changes provided to understand updates
Daneholes and Marshfoot	Daneholes and Marshfoot
 junctions Base Year East-West VISSIM is complete and shared with the Council. Forecasts have been completed but not shared with Thurrock. The impact of LTC on Daneholes or Marshfoot are not understood 	 junctions Base Year East-West VISSIM is complete, shared with the Council but not signed off. Forecasts have been completed and now shared with Thurrock but cannot be considered until the base year model is signed off. The impact of LTC on Daneholes or Marshfoot are not understood
First Della investion	Fine Delle investion
 Five Bells junction No modelling has been completed to assess and mitigate impacts 	 Five Bells junction NH has developed junction model but has yet to share it with Thurrock To be submitted by NH at Deadline 3 Base and Future Microsim modelling work is required to understand impacts of LTC

Known construction impacts – Local	Known construction impacts – Local
microsimulation or junction modelling	microsimulation or junction modelling
is required to understand need for	is required to understand need for
mitigation	mitigation
The Manorway roundabout, Orsett Cock roundabout, ASDA roundabout Daneholes roundabout, Marshfoot Road/ A1089 junction, Five Bells westbound merge with A13, A1012/Arterial Road North Stifford/Lodge Lane/ Long Lane roundabout, A1013/ Rectory Road junction, A128 Brentwood Road/ Prince Charles Avenue, A13/A1012 Gyratory in North Stifford, Grays, B149/ Chadwell Hill/ St Chads Road/ Marshfoot Road roundabout, Brentwood Road/ Heath Road, Muckingford Road/ Construction Haul Road, Southend Rd/ Lampits Hill, Station Road/ Love Lane, Stifford Road approach to B1335 Stifford Road	The Manorway roundabout, Orsett Cock roundabout, ASDA roundabout (NH state that it is preparing A1089 Asda roundabout Microsim model to be shared at Deadline 3), Daneholes roundabout, Marshfoot Road/ A1089 junction, Five Bells westbound merge with A13, A1012/Arterial Road North Stifford/Lodge Lane/ Long Lane roundabout, A1013/ Rectory Road junction, A128 Brentwood Road/ Prince Charles Avenue, A13/A1012 Gyratory in North Stifford, Grays, B149/ Chadwell Hill/ St Chads Road/ Marshfoot Road roundabout, Brentwood Road/ Heath Road, Muckingford Road/ Construction Haul Road, Southend Rd/ Lampits Hill, Station Road/ Love Lane, Stifford Road approach to B1335 Stifford Road

Thurrock Council Comments on Applicant's Submissions at Deadline 1 and 2 (D1 & D2) – Lower Thames Crossing TRO10032-003072-915 Localised Traffic Modelling – Summary Review – Appendix E

Lower Thames Crossing

Annex 2 Comparative Assessment of Journey Times

COMPARATIVE ANALYSIS AT MANORWAY JUNCTION

Table 4.1 A13 Manorway junction, 07:00-08:00, 2030 (REP1-187)

- National Highway's Data and Analysis

- Comparison Analysis completed and presented by Thurrock

	DO MINIMUM															
Route	Distance	(metres)	Comp	arison	Flows (v	rehicles)	Compa	rison	Time	(secs)	Comp	arison	Weighted tim	e (mins x veh)	Comp	arison
	SATURN	Vissim	Distance (Vissim - SATURN) [1]	% from Saturn [2]	SATURN	Vissim	Flow (Vissim - SATURN) [3]	% from Saturn [4]	SATURN	Vissim	Time (Vissim - SATURN) [5]	% from Saturn [6]	SATURN	Vissim	Weighted Time Comparison (Vissim - SATURN) [7]	% from Saturn [8]
1	2,687	2,919	232	8.6%	2457	2449	-8	-0.3%	117	103	-14 🕻	-12.0%	4,806	4,198	-608 🧧	-12.7%
2	4,464	2,934	-1,530	-34.3%	3198	3189	-9	-0.3%	217	111	-106	48.8%	11,569	5,897	-5,672	-49.0%
3	4,253	4,088	-165	-3.9%	380	374	-6	-1.6%	245	238	-7	-2.9%	1,550	1479	-71 🕴	-4.6% 📮
4	3,822	4,009	187 📕	4.9%	161	153	-8	-5.0%	232	225	-7 (-3.0%	625	574	-51 🕴	-8.2% 🗖
5	3,280	3,309	29	0.9%	246	246	0	0.0%	208	205	-3	-1.4%	853	843	-10	-1.2% 🕴
6	3,660	3,527	-133	-3.6%	109	104	5	-4.6%	253	258	5	2.0%	461	447	-14 🕴	-3.0% 🚺
7	4,446	3,329	1,117	-25.1%	84	83	-1 💶	-1.2%	453	205	-248	-54.7%	632	284	-348	-55.1%
8	4,472	3,345	1,127	25.2%	5	4	-1 🖣	-20.0%	290	207	-83	-28.6%	23	13	-10	43.5%
Total w	veighted tim	ie, exclud	ing mainlir	ne, hours									69	61		

TOTAL 31,084 27,460 -3,624 -11.7% 6.640 6.602 -38 -0.6% 2,015 1,552 -463 -23.0% 20,519 13,735 -6,784 -33.1%

	DO SOMETHING															
Route	Distance	(metres)	Comp	arison	Flows (v	rehicles)	Compa	rison	Time	(secs)	Comp	arison	Weighted tim	e (mins x veh)	Comp	arison
	SATURN	Vissim	Distance (Vissim - SATURN) [1]	% from Saturn [2]	SATURN	Vissim	Flow (Vissim - SATURN) [9]	% from Saturn [10]	SATURN	Vissim	Time (Vissim - SATURN) [11]	% from Saturn [12]	SATURN	Vissim	Weighted Time Comparison (Vissim - SATURN) [13]	% from Saturn [14]
1	2,687	2,919	232	8.6%	2,863	2,854	-9	-0.3%	130	104	-26 🚺	-20.0%	6,188	4,970	-1,218 💶	-19.7%
2	4,464	2,934	-1,530	-34.3%	3,319	3,295	-24	-0.7% 📕	250	126	-124	-49.6%	13,822	6,938	-6,884	-49.8%
3	4,253	4,088	-165	-3.9%	406	397	-9	-2.2%	258	244	-14	-5.4%	1,751	1,616	-135	-7.7% 📮
4	3,822	4,009	187 📕	4.9%	165	154	-14	-6.7%	256	231	-25	-9.8% 🗖	705	590	-115	-16.3%
5	3,280	3,309	29	0.9%	206	204	-2 📕	-1.0% 🗖	207	207	0	0.0%	711	707	-4	-0.6%
6	3,660	3,527	-133	-3.6%	107	104	-3 💶	-2.8%	259	258	-1	-0.4% 🕴	464	448	-16 🕴	-3.4%
7	4,446	3,329	1,117	-25.1%	30	29	-1 1	-3.3%	671	209	-462	-68.9%	330	100	-230	-69.7%
8	4,472	3,345	1,127	-25.2%	5	5	0	0.0%	291	204	-87 🛄	-29.9%	23	16	-7	-30.4%
Total w	eighted tim	e, excludi	ing mainlir	ne, hours									66	58		5

 TOTAL
 31,084
 27,460
 -3,524
 -11.7%
 7,101
 7,042
 -59
 -0.8%
 2,322
 1,583
 -739
 -31.8%
 23,994
 15,385
 -8,609
 -35.9%

	DO SOMETHING minus DO MINIMUM																
Route						Flow Differe	nces (vehicles)		Time Differer	nces (seconds	;)	Weighted Time Changes (mins vehicles)				
					SATURN [15]			% from Saturn [18]	SATURN [19]	Vissim [20]	Flow Comparison [20]-[19]	% from Saturn [22]	SATURN [23]	Vissim [24]	Flow Comparison [24]-[23]	% from Saturn [26]	
							[17]				[21]				[25]		
1					406	405	-1	-0.2%	13	1	-12 🕻	-92.3%	1382	772	-610	-44.1%	
2					121	106	-15	-12.4%	33	15	-18 🖣	-54.5%	2253	1041	-1,212	-53.8%	
3					26	23	-3 💻	-11.5%	13	6	-7	-53.8%	201	137	-64	-31.8	
4					4	1	-3 🗖	-75.0%	24	6	-18 🖣	-75.0%	80	16	-64	-80.0%	
5					-40	-42	-2 🗖	5.0%	-1	2	3	-300.0%	-142	-136	6	-4.2% 🚺	
6					-2	0	2	-100.0%	6	0	-6	-100.0	3	1	-2	-66.7%	
7					-54	-54	0	0.0%	218	4	-214	-98.2%	-302	-184	118	-39 4%	
8					0	1	1	#DIV/0!	1	-3	-4	-400.0%	0	3	3	#DIV/0!	

TOTAL 461 440 -21 -4.6% 307 31 -276 -89.9% 3.475 1.650 -1.825 -52.5%

Table 4.2 A13 Manorway junction, 17:00-18:00, 2030 (REP1-187)

- National Highway's Data and Analysis

- Comparison Analysis completed and presented by Thurrock

								DO M	INIMUM							
Route	Distance	(metres)	Comp	arison	Flows (v	vehicles)	Compa	rison	Time (secs)	Comp	arison	Weighted tim	e (mins x veh)	Comp	arison
	SATURN	Vissim	Distance (Vissim - SATURN) [1]	% from Saturn [2]	SATURN	Vissim	Flow (Vissim - SATURN) [3]	% from Saturn [4]	SATURN	Vissim	Time (Vissim - SATURN) [5]	% from Saturn [6]	SATURN	Vissim	Weighted Time Comparison (Vissim - SATURN) [7]	% from Saturn [8]
1	2,687	2,919	232 📕	8.6% 🗖	2963	2955	-8	-0.3% 🕴	147	105	-42	-28.6%	7,281	5,149	-2, <mark>432</mark>	-2 <mark>9.3%</mark>
2	4,464	2,934	-1,530	-34.3%	2581	2570	-11	-0.4%	194	104	-90	-46.4%	8,328	4,435	-3,893	-46.7%
3	4,253	4,088	-165	-3.9%	187	181	6	-3.2%	241	240	-1 🕴	-0.4% 🕴	752	721	-31 🕴	-4.1% 💶
4	3,822	4,009	187 📕	4.9%	447	436	-11	-2.5%	242	217	-25 🗖	-10.3%	1808	1579	-229 📕	-12.7%
5	3,280	3,309	29	0.9%	112	110	-2 😐	-1.8%	205	204	-1 🕴	-0.5%	380	375	-5	-1.3%
6	3,660	3,527	-133	-3.6%	239	231	-8	-3.3%	284	282	-2 🕴	-0.7% 🕴	1128	1086	-42 🕴	-3.7% 📕
7	4,446	3,329		25.1%	9	8	-1 🖣	-11.1%	292	206	-86	-2 <mark>9.5%</mark>	44	29	-15 🕴	34.1%
8	4,472	3,345	4,127	25.2%	99	94	Ļ	-5.1%	324	210	-114	-85.2%	535	327	-208 🔰	-38.9%
Total w	eighted tim	e, excludi	ing mainlin	ie, hours									77	69		
TOTAL	31,084	27,460	-3,624	-11.7%	6,637	6,585	-52	-0.8%	1,929	1,568	-361	-18.7%	20,256	13,701	-6,555	-32.4%

								DO SO	METHING							
Route	Distance	(metres)	Comp	arison	Flows (v	vehicles)	Compa	rison	Time	(secs)	Comp	arison	Weighted time	e (mins x veh)	Comp	arison
	SATURN	Vissim	Distance (Vissim - SATURN) [1]	% from Saturn [2]	SATURN	Vissim	Flow (Vissim - SATURN) [9]	% from Saturn [10]	SATURN	Vissim	Time (Vissim - SATURN) [11]	% from Saturn [12]	SATURN	Vissim	Weighted Time Comparison (Vissim - SATURN) [13]	% from Saturn [14]
1	2,687	2,919	232 📕	8.6% 🗖	3,599	3,584	-15	-0.4%	153	106	-47	-3 <mark>0.7%</mark>	6,188	4,970	-1,218 💻	-19.7%
2	4,464	2,934	-1,530	-34.3%	3,121	3,109	-12	-0.4%	220	116	404	-47.3%	13,822	6,938	-6,884	49.8%
3	4,253	4,088	-165	-3.9%	197	188	-9	4.6%	254	238	-16 🧧	-6.3% 🗖	1,751	1,616	-135 4	-7.7% 🗧
4	3,822	4,009	187 🖡	4.9%	490	472	-18	-37%	259	232	-27 🗖	-10.4%	705	590	-115 🕴	-16.3%
5	3,280	3,309	29	0.9%	108	108	0	0.0%	205	207	2	1.0%	711	707	-4	-0.6% 🕴
6	3,660	3,527	-133	-3.6%	154	151	-3 💻	-1.9%	427	276	-151	-85.4%	464	448	-16 🕴	-3.4%
7	4,446	3,329	1,117	25.1%	9	9	0	0.0%	277	203	-74	-26.7%	330	100	-230	-69.7%
8	4,472	3,345	1,127	- <mark>25.2%</mark>	80	75	-5 🗖	-6.3%	314	216	-98	-34.2%	23	16	-7	-30.4%
Total w	eiahted tim	e. excludi	ng mainlin	e. hours									81	66		

i otal weighted t	me, excludi	ng mainiir	ie, nours									81	66		
TOTAL 31,084	27,460	-3,624	-11.7%	7,758	7,696	-62	-0.8%	2,109	1,594	-515	-24.4%	23,994	15,385	-8,609	-35.9%

					DOS	SOMETHING	minus DO MIN	IIMUM							
Route				Flow Differe	nces (vehicles)			Time Differer	ices (seconds	5)	Weighted Time Changes (mins vehicles)				
			SATURN [15]	Vissim [16]	Flow Comparison [16]-[15]	% from Saturn [18]	SATURN [19]	Vissim [20]	Flow Comparison [20]-[19]	% from Saturn [22]	SATURN [23]	Vissim [24]	Flow Comparison [24]-[23]	% from Saturn [26]	
					[17]			-	[21]				[25]		
1			636	629	7	-1.1% 🕴	6	1	-5	-83 <mark>.3%</mark>	9200	6352	-2, <mark>848</mark>	-31.0%	
2			540	539		-0.2% 🕴	26	12	-14 🖣	-53.8%	11444	6030	-5,414	-47.3%	
3			10	7	"	-30.0%	13	-2	-15 📕	-145.4%	835	745	-90	-10.8%	
4			43	36		-16.3	17	15	-2 🕴	-11.8%	2112	1830	-282	-13.4%	
5			-4	-2	2	-50.0%	0	3	3	#DIV/0!	369	372	3	0.8%	
6			-85	-80	5	-5.9% 💶	143	-6	-149	-104.2%	1099	694	-405	-36.9%	
7			0	1	1	#DIV/0!	-15	-3	12	-80.0%	44	31	-13	-2 <mark>9.5%</mark>	
8			-19	-19	0	0.0%	-10	6	16	-160.0%	421	271	-150	35.6%	

TOTAL					1,121	1,111	-10	-0.9%	180	26	-154	-85.6%	25,524	16,325	-9,199	-36.0%
-------	--	--	--	--	-------	-------	-----	-------	-----	----	------	--------	--------	--------	--------	--------

Table 4.3 A13 Manorway junction, 07:00-08:00, 2045

- National Highway's Data and Analysis

- Comparison Analysis completed and presented by Thurrock

								DO M	INIMUM							
Route	Distance	(metres)	Comp	arison	Flows (v	vehicles)	Compa	rison	Time	(secs)	Comp	arison	Weighted tim	e (mins x veh)	Comp	arison
	SATURN Vissim Distance (Vissim- SATURN) % from (2) SATURN Vissim % from SATURN) SATURN Vissim % from Saturn SATURN Vissim Saturn % from Saturn SATURN Vissim Time (1) % from Saturn SATURN Vissim Time Saturn % from Saturn SATURN Vissim Time Saturn % from Saturn SATURN Vissi 10 0.007 0.00														Weighted Time Comparison (Vissim - SATURN) [7]	% from Saturn [8]
1	2,687	2,919	232 📕	8.6%	2853	2842	44	-0.4% 🕴	149	105	-44 💶	-29.5%	7,071	4,968	-2,103	-29.7%
2	4,464	2,934	-1,530	-34.3%	3195	3177	-18	-0.6%	220	114	-106	-48.2%	11,695	6,040	-5,655	48.4%
3	4,253	4,088	-165	-3.9%	375	369	-6 💻	-1.6% 📕	253	240	-13 🚺	-5.1%	1,585	1479	-106	-6.7% 🧧
4	3,822	4,009	187 📕	4.9%	162	153	-9	-5.6%	235	221	-14	-6.0%	632	562	-70 🕴	-11.1% 🗖
5	3,280	3,309	29	0.9%	234	233	-1	-0.4%	208	206	-2 🕴	-1.0% 🕴	811	799	-12 🕴	-1.5% 🕴
6	3,660	3,527	-133	-3.6%	107	103	-4 💻	-3.7%	290	265	-25	-8.6% 📕	518	455	-63 🕴	-12.2% 💻
7	4,446	3,329		25.1%	43	43	0	0.0%	588	208	-380	-64.6%	424	149	-275	-64.9%
8	4,472	3,345	4,127	25.2%	6	5	-1	-16.7%	294	202	-92 🗖	-31. <mark>3%</mark>	30	16	-14 🕴	46.7%
Total w	eighted tim	e, excludi	ing mainlin	ie, hours									67	58		
TOTAL	31,084	27,460	-3,624	-11.7%	6,975	6,925	-50	-0.7%	2,237	1,561	-676	-30.2%	22,766	14,468	-8,298	-36.4%

								DO SO	METHING							
Route	Distance	(metres)	Comp	arison	Flows (v	vehicles)	Compa	irison	Time	(secs)	Comp	arison	Weighted tim	e (mins x veh)	Comp	arison
	SATURN	Vissim	Distance (Vissim - SATURN) [1]	% from Saturn [2]	SATURN	Time (Vissim - SATURN) [11]	% from Saturn [12]	SATURN	Vissim	Weighted Time Comparison (Vissim - SATURN) [13]	% from Saturn [14]					
1	2,687	2,919	232 📕	8.6% 🏴	3,293	3,282	-11	-0.3%	152	106	-46 📕	-30.8%	8,351	5,808	-2,543	-30.5%
2	4,464	2,934	-1,530	-34.3%	3,392	3,364	-28	-0.8%	255	135	-120	-47.1%	14,434	7,558	-6,876	-47.6%
3	4,253	4,088	-165	-3.9%	410	401	-9 🗖	-2.2%	266	242	-24	-9.0%	1,819	1,619	-200	-11.0% 🗖
4	3,822	4,009	187 🖡	4.9%	165	154	-11	-6.7%	353	239	-114 🗖	-32.3%	971	612	-359 🗧	-37 <mark>.0%</mark>
5	3,280	3,309	29	0.9%	187	183	-4 📮	-2.1%	208	213	5	2.4%	647	650	3	0.5%
6	3,660	3,527	-133	-3.6%	101	99	-2	-2.0%	353	264	-89 💶	-25.2%	595	435	-160	-26.9%
7	4,446	3,329	1,117	25.1%	35	34	-1	-2.9%	716	207	-509	-71.1%	413	119	-294 🚺	-71.2%
8	4,472	3,345	1,127	25.2%	10	9	-1	-10.0%	291	207	-84 🗖	-28.9%	49	31	-18 🕴	-36 7%

Total weighted time, excludi	ng mainline, hours								75	58		
TOTAL 31,084 27,460	-3,624 -11.7%	7,593 7,526	-67	-0.9%	2,594	1,613	-981	-37.8%	27,279	16,832	-10,447	-38.3%

					DO	SOMETHING	minus DO MII	IIMUM						
Route				Flow Differe	nces (vehicles)		Time Differer	nces (seconds	;)	We	ighted Time Cha	anges (mins vehi	cles)
			SATURN [15]	Vissim [16]	Flow Comparison [16]-[15]	% from Saturn [18]	SATURN [19]	Vissim [20]	Flow Comparison [20]-[19]	% from Saturn [22]	SATURN [23]	Vissim [24]	Flow Comparison [24]-[23]	% from Saturn [26]
					[17]				[21]				[25]	
1			440	440	0	0.0%	3	1	-2	-66.7%	9200	6352	-2, <mark>848</mark>	-31.0%
2			197	187	-10	-5.1%	35	21	-14 📕	-40.0%	11444	6030	-5,414	-47.3%
3			35	32	-3	-8.6%	13	2	-11 📕	-84.6	835	745	-90	-10.8%
4			3	1	-2 🗖	-66.7%	118	18	-100	-84.7	2112	1830	-282	-13.4%
5			-47	-50	-3	6.4%	0	7	7	#DIV/0!	369	372	3	0.8%
6			-6	-4	2 🗖	-33.3%	63	-1	-64	-101.6%	1099	694	-405	-36.9%
7			-8	-9	-1 📕	12.5%	128	-1	-129	-100.8%	44	31	-13	-2 <mark>9.5%</mark>
8			4	4	0	0.0%	-3	5	8	-266.7%	421	271	-150	35.6%

TOTAL					618	601	-17	-2.8%	357	52	-305	-85.4%	25,524	16,325	-9,199	-36.0%
-------	--	--	--	--	-----	-----	-----	-------	-----	----	------	--------	--------	--------	--------	--------

Table 4.4 A13 Manorway junction, 17:00-18:00, 2045

- National Highway's Data and Analysis

- Comparison Analysis completed and presented by Thurrock

								DO M	INIMUM							
Route																arison
	SATURN Vissim Distance (Vissim Saturn) [1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2														Weighted Time Comparison (Vissim - SATURN) [7]	% from Saturn [8]
1	2,687	2,919	232 📕	8.6%	3090	3078	-12	-0.4%	149	105	-44	-2 9.5%	7,649	5,391	-2,258	-2 <mark>9.5%</mark>
2	4,464	2,934	-1,530	-34.3%	3031	3020	-11	-0.4%	205	109	-96	-46.8%	10,374	5,468	-4,906	-47.3%
3	4,253	4,088	-165	-3.9%	179	172	7	-3.9%	245	242	-3 🕯	-1.2% 🕴	733	694	-39 🕴	-5.3% 🗧
4	3,822	4,009	187 📕	4.9%	443	430	-13	-2.9%	248	224	-24 💶	-9.7%	1837	1602	-235	-12.8%
5	3,280	3,309	29	0.9%	110	108	-2 🗖	-1.8%	206	206	0	0.0%	377	369	-8	-2.1%
6	3,660	3,527	-133	-3.6%	232	222	-10	-4.3%	335	290	-45	-13.4%	1295	1075	-220	-17.0
7	4,446	3,329	11	25.1%	8	8	0	0.0%	353	211	-142	40.2%	49	29	-20 🕴	-40.8%
8	4,472	3,345	1,127	25.2%	103	99	-4 💻	-3.9%	331	213	-118	-35.6%	568	352	-216	-38.0%
Total w	veighted tim	ie, excludi	ing mainlin	ie, hours									81	69		

 TOTAL
 31,084
 27,460
 -3,624
 11.7%
 7,196
 7,137
 -59
 -0.8%
 2,072
 1,600
 -472
 -22.8%
 22,882
 14,980
 -7,902
 -34.5%

								DO SO	METHING							
Route	Distance	(metres)	Comp	arison	Flows (v	ehicles)	Compa	rison	Time	(secs)	Comp	arison	Weighted time	e (mins x veh)	Comp	arison
	SATURN Vissim Distance (Vissim Saturn SATURN Vissim [2] [1] SATURN [2] SATURN [2] SATURN [2] SATURN [2] SATURN [2] SATURN [1] SATURN															% from Saturn [14]
1	2,687	2,919	232	8.6% 🗖	3,780	3,734	-46	-1.2%	156	110	-46 💶	-2 <mark>9.5%</mark>	9,850	6,853	-2,997	-30.4%
2	4,464	2,934	-1,530	-34.3%	3,500	3,452	-48	-1.4%	247	140	-107	43.3%	14,385	8,053	-6,332	44.0%
3	4,253	4,088	-165	-3.9%	190	167	-23	-12.1%	261	246	-15 🖡	-5.7%	825	685	-140	-17.0
4	3,822	4,009	187 📕	4.9%	471	453	-18	-3 <mark>18</mark> %	444	246	-198	-44.6%	3483	1858	-1,625	-46.7%
5	3,280	3,309	29	0.9%	101	98	-3	-3. <mark>0</mark> %	205	221	16	7.8%	345	359	14	4.1% 🖡
6	3,660	3,527	-133	-3.6%	95	93	-2	-2.	538	281	-257	47.8%	852	435	-417 🖣	-48.9%
7	4,446	3,329	4,117	25.1%	14	15	1	7.1	311	203	-108	-34.7%	73	52	-21	-2 <mark>8.8%</mark>
8	4,472	3,345	1,127	25.2%	89	84	-5 🗖	- 5-6 %	319	220	-9 9	-31.0%	473	308	-165 🕴	34.9%
Total w	eighted tim	e, excludi	ng mainlin	e, hours									101	62		

1,667 -814 -32.8% 30,286 18,603 -11,683	-814	1,667	2,481	-1.7%	-144	8,096	8,240	-11.7%	-3,624	27,460	31,084	TOTAL
---	------	-------	-------	-------	------	-------	-------	--------	--------	--------	--------	-------

					DO	SOMETHING	minus DO MIN	NIMUM						
Route				Flow Differe	nces (vehicles)			Time Differe	nces (seconds	;)	We	ighted Time Cha	inges (mins vehi	cles)
			SATURN [15]	Vissim [16]	Flow Comparison [16]-[15]	% from Saturn [18]	SATURN [19]	Vissim [20]	Flow Comparison [20]-[19]	% from Saturn [22]	SATURN [23]	Vissim [24]	Flow Comparison [24]-[23]	% from Saturn [26]
					[17]				[21]				[25]	
1			690	656	-34	-4.9%	7	5	-2	-28.6% 🕈	9200	6352	-2, <mark>848</mark>	-31.0%
2			469	432	-37	-7.9%	42	31	-11 🕻	-26.2% 🕈	11444	6030	-5,414	47.3%
3			11	-5	-16	-145.5%	16	4	-12 🖡	-75.0%	835	745	-90	-10.8%
4			28	23	-5 🗖	-17.9%	196	22	-174	-88.8%	2112	1830	-282	-13.4%
5			-9	-10	-1	11.1%	-1	15	16	-1600.0%	369	372	3	0.8%
6			-137	-129	8 🎴	-5.8%	203	-9	-212	-104.4%	1099	694	-405	36.9%
7			6	7	1	16.7%	-42	-8	34 📕	-81.0%	44	31	-13	-2 <mark>9.5%</mark>
8			-14	-15	-1	7.1%	-12	7	19	-158.3%	421	271	-150	35.6%

COMPARATIVE ANALYSIS AT MANORWAY JUNCTION - Summary

Table 4.1 A13 Manorway junction, 07:00-08:00, 2030 (REP1-187)

Route	Distance	(metres)	Comp	arison	Flows (v	ehicles)	Compa	rison	Time	secs)	Comp	arison	Weighted time	e (mins x veh)	Comp	arison
	SATURN	Vissim	Distance (Vissim - SATURN) [1]	% from Saturn [2]	SATURN		Flow (Vissim - SATURN) [3]	% from Saturn [4]	SATURN	Vissim	Time (Vissim - SATURN) [5]	% from Saturn [6]	SATURN	Vissim	Weighted Time Comparison (Vissim - SATURN) [7]	% from Saturn [8]
DO MINIMUM	31,084	27,460	-3,624	-11.7%	6,640	6,602	-38	-0.6%	2,015	1,552	-463	-23.0%	20,519	13,735	-6,784	-33.1%
DO SOMETHING	31,084	27,460	-3,624	-11.7%	7,101	7,042	-59	-0.8%	2,322	1,583	-739	-31.8%	23,994	15,385	-8,609	-35.9%

Table 4.2 A13 Manorway junction, 17:00-18:00, 2030 (REP1-187)

Route	Distance	(metres)	Comp	arison	Flows (v	vehicles)	Compa	rison	Time	(secs)	Comp	arison	Weighted time	e (mins x veh)	Comp	arison
	SATURN	Vissim	Distance (Vissim - SATURN) [1]	% from Saturn [2]	SATURN		Flow (Vissim - SATURN) [3]	% from Saturn [4]	SATURN	Vissim	Time (Vissim - SATURN) [5]	% from Saturn [6]	SATURN	Vissim	Weighted Time Comparison (Vissim - SATURN) [7]	% from Saturn [8]
DO MINIMUM	31,084	27,460	-3,624	-11.7%	6,637	6,585	-52	-0.8%	1,929	1,568	-361	-18.7%	20,256	13,701	-6,555	-32.4%
DO SOMETHING	31,084	27,460	-3,624	-11.7%	7,758	7,696	-62	-0.8%	2,109	1,594	-515	-24.4%	23,994	15,385	-8,609	-35.9%

Table 4.3 A13 Manorway junction, 07:00-08:00, 2045

Route	Distance	(metres)	Comp	arison	Flows (v	vehicles)	Compa	rison	Time	(secs)	Comp	arison	Weighted time	e (mins x veh)	Comp	arison
	SATURN	Vissim	Distance (Vissim - SATURN) [1]	% from Saturn [2]	SATURN		Flow (Vissim - SATURN) [3]	% from Saturn [4]	SATURN	Vissim	Time (Vissim - SATURN) [5]	% from Saturn [6]	SATURN	Vissim	Weighted Time Comparison (Vissim - SATURN) [7]	% from Saturn [8]
DO MINIMUM	31,084	27,460	-3,624	-11.7%	6,975	6,925	-50	-0.7%	2,237	1,561	-676	-30.2%	22,766	14,468	-8,298	-36.4%
DO SOMETHING	31,084	27,460	-3,624	-11.7%	7,593	7,526	-67	-0.9%	2,594	1,613	-981	-37.8%	27,279	16,832	-10,447	-38.3%

Table 4.4 A13 Manorway junction, 17:00-18:00, 2045

Route	Distance	(metres)	Comp	arison	Flows (v	ehicles)	Compa	rison	Time	(secs)	Comp	arison	Weighted time	e (mins x veh)	Comp	arison
	SATURN	Vissim	Distance (Vissim - SATURN) [1]	% from Saturn [2]	SATURN	Vissim	Flow (Vissim - SATURN) [3]	% from Saturn [4]	SATURN	Vissim	Time (Vissim - SATURN) [5]	% from Saturn [6]	SATURN	Vissim	Weighted Time Comparison (Vissim - SATURN) [7]	% from Saturn [8]
DO MINIMUM	31,084	27,460	-3,624	-11.7%	7,196	7,137	-59	-0.8%	2,072	1,600	-472	-22.8%	22,882	14,980	-7,902	-34.5%
DO SOMETHING	31,084	27,460	-3,624	-11.7%	8,240	8,096	-144	-1.7%	2,481	1,667	-814	-32.8%	30,286	18,603	-11,683	-38.6%

COMPARATIVE ANALYSIS AT ORSETT COCK JUNCTION

Table 4.5 A13 Orsett Cock junction, 07:00-08:00, 2030

- National Highway's Data and Analysis

- Comparison Analysis completed and presented by Thurrock

								DO M	INIMUM							
Route	Distance	(metres)	Comp	arison	Flows (v	vehicles)	Compa	rison	Time	(secs)	Comp	arison	Weighted tim	e (mins x veh)	Comp	arison
	SATURN	Vissim	Distance (Vissim - SATURN) [1]	% from Saturn [2]	SATURN	Vissim	Flow (Vissim - SATURN) [3]	% from Saturn [4]	SATURN	Vissim	Time (Vissim - SATURN) [5]	% from Saturn [6]	SATURN	Vissim	Weighted Time Comparison (Vissim - SATURN) [7]	% from Saturn [8]
1>2	2,055	2,122	67	3.3%	155	196	4 1	26.5%	107	123	16 🗖	15.0%	277	401	124	44.8%
1>3	1,898	1,396	-502	-26.4%	67	61	4 6	-9.0%	159	118	-44	- 25.8 %	178	120	-58	-32.6%
>4	2,940	1,347	4,593	54.2%	77	79	2	2.6%	181	107	-74	40.9 %	232	141	-91	-39.2%
>5	2,301	1,533	-768	-33 4%	211	101	1 0	-52.1%	163	125	-58	- 23.3 %	572	210	-362 🗖	-63.3%
>6	3,636	3,025	-61 🗖	-16.8	140	233	93	66.4%	237	193	44	-1 8.6 %	552	748	196 👂	35.5%
>8	3,386	2,439	-947	-28.0%	93	43	5 0	-53.8%	223	171	-52	-233%	346	123	-223 📕	-64.5%
2>1	2,160	2,360	200	9.3%	209	284	75	35.9%	152	161	9 🕨	5.9%	529	760	231	43.7%
2>3	1,603	1,653	50 🎙	3.1%	0	7	7	#DIV/0!	116	100	-16	-13.8%	0	12	12 🕴	#DIV/0!
2>4	2,645	1,605	-1,040	-3 <mark>9.3%</mark>	77	141	64	83.1%	137	90	47	-34.3 %	176	210	34 🕴	19.3%
2>5	2,006	1,791	-215 🖣	-10.7%	580	504	7 6	- 13.1%	119	107	-12	-10 🍕	1152	901	-251 🖣	-21.8%
2>6	3,341	3,177	-164 🖡	-4.9%	3323	3627	304	9.1%	193	118	-75	38.9 %	10,711	7130	3,581	-33.4%
2>8	3,091	3,315	224 🖡	7.2% 🖡	299	392	93	31.1%	180	131	49	- <mark>27.2</mark> %	897	856	-41	-4.6%
3>1	1,853	1,590	-263 📕	-14.2	341	108	2 33	-68.3%	137	144	7	5.1%	778	259	-519 🗖	-66.7%
3>2	2,096	2,215	119	5.7% 🖡	0	3	8	#DIV/0!	136	161	25 🗖	18.4	0	8	8	#DIV/0!
3>4	2,338	835	-1,503	-64.3%	7	60	58	757.1%	122	73	49	40.2%	14	73	59	421.4%
8>5	1,699	1,021	-678	-39.9%	98	288	190-	19 3.9%	104	91	-13	-12 <mark>55</mark> %	170	435	265	155 .9%
3>6	3,034	2,513	-521	-17.2	314	170	44	-45.9%	178	158	-201	-112%	934	449	-485 💶	-51.9%
3>8	2,784	1,927	-857	-30	36	29	1 7	-19.4%	165	137	-28	-170%	99	66	-33	-33.3%
1>1	3,027	1,431	4,596	-52.7%	274	200	4 74	-27.0%	210	217	7	3.3%	958	725	-233 🗧	-24.3%
1>2	3,270	2,056	-1,214	-37.1%	128	231	103	80.5%	209	235	26 🗖	12.4%	445	903	458 📕	402.9%
I>3	3,113	1,330	1,783	57.3%	12	29	17	41.7%	261	230	-34	-11 <mark>9</mark> %	52	111	59	1 3.5%
l>5	2,873	862	-2,011	-70.0%	0	71	74	#DIV/0!	177	164	-13	-7.3%	0	194	194 🏓	#DIV/0!
1>6	4,208	2,354	-1,854	-44.1%	207	167	40	-19.3%	251	232	-19	-7.6%	867	645	-222 📕	-25.6%
l>8	3,958	1,768	-2,190	55.3%	0	8	8	#DIV/0!	238	211	-274	-11	0	28	28	#DIV/0!
i>1	2,208	1,465	-743	-33.7%	0	145	145	#DIV/0!	159	157	-2 🕴	-1.3%	0	379	379 🎽	#DIV/0!
i>2	2,451	2,090	-361	-14.7 <mark>%</mark>	617	433	84	-29.8%	158	174	16 📕	10.1%	1623	1255	-368 📮	-22.7%
5>3	2,294	1,364	-9 30	-4 <mark>0.5%</mark>	92	62	30	-32.6%	210	169	-44	-1 9.5 %	322	175	-147 🖡	45.7%
>4	3,336	1,315	-2,021	-60.6%	0	15	5	#DIV/0!	231	158	-73	31.6 %	0	40	40	#DIV/0!
i>6	3,389	2,387	-1,002	-29.6%	0	16	6	#DIV/0!	201	171	-302	-14.9%	0	46	46	#DIV/0!
j>8	3,139	1,802	-1,337	-42.6%	0	0	0	#DIV/0!	187	150	-874	-1 9.8 %	0	0	0	#DIV/0!
ò>1	3,082	2,770	-312	-10.1%	238	293	55	23.1%	173	153	-201	-11 <mark>16</mark> %	684	749	65	9.5%
6>2	3,325	3,347	22	0.7%	3061	3222	161-	5.3%	171	122	49	28.7%	8738	6537	-2,201	-25.2%
i>3	3,168	2,669	-499	-15.8%	184	105	7 9	-42.9%	223	166	-57	- 25.6 %	685	290	-395 💶	-57.7%
6>4	4,210	2,621	4,589	-37.7%	51	49	-2	-3.9%	245	155	-90	-36.7 %	208	127	-81	-38.9%
>5	3,571	2,807	-764	-21.4%	0	17	17	#DIV/0!	227	173	-54	- 23.8 %	0	49	49	#DIV/0!
i>8	4,656	3,713	-943	-20.3%	0	0	0	#DIV/0!	287	219	-68	-23.7%	0	0	0	#DIV/0!
							• • •								•	

TOTAL 104,144 74,015 -30,129 -28.9% 10,891 11,389 498 4.6% 6,627 5,564 -1,063 -16.0% 32,199 25,155 -7,044 -21.9%

								DO SO	METHING							
loute	Distance	(metres)	Comp	arison	Flows (v	ehicles)	Compa	rison	Time	(secs)	Comp	arison	Weighted tim	e (mins x veh)	Comp	arison
	SATURN	Vissim	Distance (Vissim - SATURN) [1]	% from Saturn [2]	SATURN	Vissim	Flow (Vissim - SATURN) [9]	% from Saturn [10]	SATURN	Vissim	Time (Vissim - SATURN) [11]	% from Saturn [12]	SATURN	Vissim	Weighted Time Comparison (Vissim - SATURN) [13]	% from Saturn [14]
>2	2,055	2,122	67	3.3%	124	161	37	29.8%	127	193	6	52.0%	263	517	254 📕	96.6%
>3	1,898	1,396	-502	-26.4%	32	29	-3	-9.4%	173	188	1 <mark>5</mark>	87%	92	91	-1	-1.1%
>4	2,940	1,347	4,593	54.2%	52	55	3	5.8%	190	177	4 3	- 6 .8%	165	162	-3	-1.8%
>5	2,301	1,533	-768	-33.4%	108	36	4 -72	-66.7%	179	199	20	11 2%	322	120	-202 📕	6 2.7%
>6	3,636	3,025	-61 🏴	-16.8	190	224	34	17.9%	222	261	39-	17 <mark>.6</mark> %	704	976	272 📕	38.6%
>8	3,386	2,439	-947	-28.0%	117	156	39	33.3%	194	265	71	36.6%	378	689	311 💷	82.3%
>1	2,160	2,360	200	9.3% 📕	78	149	71	91.0%	180	183	8	17%	234	455	221	94.4%
>3	1,603	1,653	50	3.1%	0	8	8	#DIV/0!	138	111	2 7	49.6%	0	15	15	#DIV/0!
>4	2,645	1,605	-1,040	-39.3%	28	87	59	210.7%	155	101	5 4	34 .8%	72	146	74	1 02.8%
>5	2,006	1,791	-215 🖣	-10.7%	390	258	4 -132	-33.8%	144	123	1	-44.6%	934	528	-406 🍯	43.5%
>6	3,341	3,177	-164 🖣	-4.9%	2676	2794	1 18	4.4%	187	120	5 7	5.8%	8351	5603	-2,748	-32.9%
>8	3,091	3,315	224	7.2%	219	234	15	6.8%	159	188	29	18.2%	580	735	155	26.7%
>1	1,853	1,590	-263 🗳	-14.2%	167	28	4 -139	-83.2%	162	183	21	13.0%	452	86	-366 🗳	-81.0%
>2	2,096	2,215	119	5.7%	0	4	4	#DIV/0!	179	212	331	18 <mark>.4</mark> %	0	14	14	#DIV/0!
>4	2,338	835	-1,503	-64.3%	6	58	52	866.7%	137	101	= 6	-2 6.3%	14	97	83	592.9%
>5	1,699	1,021	-678	-3 <mark>9.9%</mark>	93	243	150	461.3%	126	123	\$3	-2.4%	195	497	302 📕	154.9%
>6	3,034	2,513	-521	-17.2%	408	267	- 141	-34.6%	170	185	1 <mark>5</mark>	8 <mark>8</mark> %	1153	822	-331 🗳	-28.7%
>8	2,784	1,927	-857	-30.8%	46	27	-19	-41.3%	141	188	47=	33 <mark>.3%</mark>	108	85	-23	-21.3%
>1	3,027	1,431	4,596	-52.7%	160	125	-35	-21.9%	212	185	2 7	-12.7%	566	386	-180	-31.8%
>2	3,270	2,056	-1,214	-37.1%	96	222	126	4 31.3%	229	214	5	-6.6%	367	792	425 📕	1 5.8%
>3	3,113	1,330	1,783	57.3%	10	33	23	230.0%	273	209	6 4	12 8.4%	46	115	69	45 0.0%
>5	2,873	862	-2,011	-70.0%	0	63	63	#DIV/0!	176	125	51	29 .0%	0	131	131	#DIV/0!
>6	4,208	2,354	-1,854	-44.1%	298	263	-35	-11.7%	220	187	5 3	-45.0%	1091	818	-273 🗳	-25.0%
>8	3,958	1,768	-2,190	55.3%	0	0	0	#DIV/0!	191	190	4 1	-0.5%	0	0	0	#DIV/0!
>1	2,208	1,465	-743	-33.7%	0	138	13 8	#DIV/0!	160	158	2	-1.3%	0	363	363 📕	#DIV/0!
>2	2,451	2,090	-361	-14.7	480	291	- 189	-39.4%	178	187	.	51%	1420	906	-514 💻	-36.2%
>3	2,294	1,364	-9 30	-40.5%	80	52	-28	-35.0%	221	182	5 9	4.6%	295	158	-137 🖣	-46.4%
>4	3,336	1,315	-2,021	-60.6%	0	14	14	#DIV/0!	238	171	67	28 .2%	0	40	40	#DIV/0!
>6	3,389	2,387	-1,002	-29.6%	0	17	17	#DIV/0!	168	159	9	- 5 .4%	0	45	45	#DIV/0!
>8	3,139	1,802	-1,337	-4 <mark>2.6%</mark>	0	0	0	#DIV/0!	139	163	24	17 <mark>.3</mark> %	0	0	0	#DIV/0!
>1	3,082	2,770	-312	-10.1%	190	308	1 18	62.1%	148	152	4	27%	468	780	312 📮	66.7%
>2	3,325	3,347	22	0.7% 🕴	2019	2485	466	23.1%	165	127	5 8	2 8.0%	5552	5265	-287 🗳	-5.2%
i>3	3,168	2,669	-499	-15.8	135	85	-50	-37.0%	208	176	= 32	45.4%	469	249	-220 📕	-46.9%
i>4	4,210	2,621	-1,589	-37.7%	42	39	-3	-7.1%	224	165	5 9	26 .3%	157	107	-50	-31.8%
>5	3,571	2,807	-764	-21.4%	0	16	16	#DIV/0!	213	188	\$ 5	-4.7%	0	50	50	#DIV/0!
>8	4,656	3,713	-943	-20.3%	0	0	0	#DIV/0!	228	253	25	110%	0	0	0	#DIV/0!

TOTAL 104,144 74,015 -30,129 -28.9% 8,244 8,969 725 8.8% 6,554 6,292 -262 4.0% 24,448 21,843 -2,605 -10.7%

					DO S	SOMETHING I	minus DO MII	NIMUM						
Route				Flow Differe	nces (vehicles)			Time Differe	nces (seconds)	We	ighted Time Cha	anges (mins vehi	cles)
			SATURN [15]	Vissim [16]	Flow Comparison [16]-[15]	% from Saturn [18]	SATURN [19]	Vissim [20]	Flow Comparison [20]-[19]	% from Saturn [22]	SATURN [23]	Vissim [24]	Flow Comparison [24]-[23]	% from Saturn [26]
					[17]				[21]				[25]	
1>2			-31	-35	-4	12.9%	20	70	50	2 <mark>5</mark> 0.0%	-14	116	130	9 28.6%
1>3			-35	-32	3	8.6%	14	70	56	400.0%	-86	-29	57	-66.3%
1>4			-25	-24	1	4.0%	9	70	61	677.8%	-67	21	88	- 1 β1.3%
1>5			-103	-65	38	\$6.9%	16	74	58	362.5%	-250	-90	1 60	- 6 4.0%
1>6			50	-9	5 9	1 8.0%	-15	68	83	-553.3%	152	228	76	50.0%
1>8			24	113	89	3 70.8 %	-29	94	123	-424.1%	32	566	534	1668.8%
2>1			-131	-135	-4	8.1%	28	22	-6	- 2 1.4%	-295	-305	-10	3.4%
2>3			0	1	1	#DIV/0!	22	11	I -11	- \$ 0.0%	0	3	3	#DIV/0!
2>4			-49	-54	-5	10.2%	18	11	-7	-\$8.9%	-104	-64	40	-\$8.5%
2>5			-190	-246	- 56	29.5%	25	16	- 9	-\$6.0%	-218	-373	-155	71.1%
2>6			-647	-833	186	28.7%	-6	2	8	-133.3%	-2360	-1527	833	-\$5.3%
2>8			-80	-158	5 -78	97.5%	-21	57	78	- 3 71.4%	-317	-121	JI 196	-61.8%
3>1			-174	-80	94	5 4.0%	25	39	14	56.0%	-326	-173	153	-46.9%
3>2			0	1	1	#DIV/0!	43	51	8	18.6%	0	6	6	#DIV/0!
3>4			-1	-2	-1	100.0%	15	28	13	86.7%	0	24	24	#DIV/0!
3>5			-5	-45	40	800.0%	22	32	10	45.5%	25	62	37	148.0%
3>6			94	97	3	8.2%	-8	27	35	-437.5%	219	373	154	70.3%
3>8			10	-2	12	20.0%	-24	51	75	-312.5%	9	19	10	111.1%
4>1			-114	-75	39	84.2%	2	-32	-34	1 00.0%	-392	-339	53	-13.5%
4>2			-32	-9	23	71.9%	20	-21	-41	-205.0%	-78	-111	-33	42.3%
4>3			-2	4	6	00.0%	12	-21	-33	-275.0%	-6	4	10	- 1 66.7%
4>5			0	-8	-8	#DIV/0!	-1	-39	-38	3800.0%	0	-63	-63	#DIV/0!
4>6			91	96	5	5.5%	-31	-45	1 -14	45.2%	224	173	-51	-22.8%
4>8			0	-8	4-8	#DIV/0!	-47	-21	26	- 5 5.3%	0	-28	-28	#DIV/0!
5>1			0	-7	-7	#DIV/0!	1	1	0	0.0%	0	-16	-16	#DIV/0!
5>2			-137	-142	-5	8.6%	20	13	-7	-\$5.0%	-203	-349	-146	71.9%
5>3			-12	-10	2	46.7%	11	13	2	18.2%	-27	-17	10	-\$7.0%
5>4			0	-1	-1	#DIV/0!	7	13	6	85.7%	0	0	0	#DIV/0!
5>6			0	1	1	#DIV/0!	-33	-12	21	-63.6%	0	-1	-1	#DIV/0!
5>8			0	0	0	#DIV/0!	-48	13	61	-127.1%	0	0	0	#DIV/0!
6>1			-48	15	63	4 31.3%	-25	-1	24	-96.0%	-216	31	247	-114.4%
6>2			-1,042	-737	305	29.3%	-6	5	11	-183.3%	-3186	-1272	1,914	-60.1%
6>3			-49	-20	29	59.2%	-15	10	25	-166.7%	-216	-41	175	-81.0%
6>4			-9	-10	-1	11.1%	-21	10	31	-147.6%	-51	-20	31	-60.8%
6>5	_		0	-1	-1	#DIV/0!	-14	15	29	-207.1%	0	1	1	#DIV/0!
6>8	_		0	0	0	#DIV/0!	-59	34	93	-167.6%	0	0	0	#DIV/0!

TOTAL -2,647 -2,420 227 -8.6% -73 728 801 -1097.3% -7.751 -3.312 4,439 -57.3%

COMPARATIVE ANALYSIS AT ORSETT COCK JUNCTION

Table 4.6 A13 Orsett Cock junction, 17:00-18:00, 2030

- National Highway's Data and Analysis

- Comparison Analysis completed and presented by Thurrock

								DOM	INIMUM							
oute	Distance	(metres)	Comp	arison	Flows (v	vehicles)	Compa	rison	Time	(secs)	Comp	arison	Weighted time	e (mins x veh)	Comp	arison
	SATURN	Vissim	Distance (Vissim - SATURN) [1]	% from Saturn [2]	SATURN	Vissim	Flow (Vissim - SATURN) [3]	% from Saturn [4]	SATURN	Vissim	Time (Vissim - SATURN) [5]	% from Saturn [6]	SATURN	Vissim	Weighted Time Comparison (Vissim - SATURN) [7]	% from Satu [8]
1>2	2,055	2,122	67	3.3%	172	242	70	40.7%	113	134	21 🗖	18.6%	323	540	217 📕	67.2%
1>3	1,898	1,396	-502	-26.4%	195	124	4 -71	-36.4%	194	131	63	- <mark>32.5</mark> %	630	270	-360	-57.1%
1>4	2,940	1,347	4,593	54.2%	272	40	232	-85.3%	213	115	-98	-46.0%	965	77	-888	-92.0%
1>5	2,301	1,533	-768	-33.4%	107	170	63	58.9%	186	134	-522	-28.0%	332	380	48	14.5%
1>6	3,636	3,025	-61 🎑	-16.8	130	236	106	81.5%	233	185	-48	-20 .6 %	504	726	222 💷	44.0%
1>8	3,386	2,439	-947	-28.0%	82	26	- 56	-68.3%	220	164	-56	-2 5.5 %	301	71	-230	-76.4%
2>1	2,160	2,360	200	9.3%	93	133	40	43.0%	142	161	19 🗖	13.4%	220	357	137 📕	62.3%
2>3	1,603	1,653	50 🕴	3.1%	1	12	11	1100.0%	124	103	-21	-16 <mark>.9</mark> %	2	21	19 🕴	950.0%
2>4	2,645	1,605	-1,040	-39.3%	174	39	1 35	-77.6%	143	88	-55	38.5%	414	57	-357	-86.2%
2>5	2,006	1,791	-215 🖣	-10.7%	598	490	1 08	-18.1%	116	107	-9 🖡	-7.8%	1159	873	-286	-24.7%
2>6	3,341	3,177	-164 🖡	-4.9%	2987	3220	233	7.8%	163	114	-49	- 30.1 %	8,095	6106	-1,989	-24.6%
2>8	3,091	3,315	224 🎙	7.2% 🖡	126	191	65	51.6%	150	127	-23	-15 <mark>13</mark> %	316	404	88	27.8%
3>1	1,853	1,590	-263 🗳	-14.2%	129	134	5	3.9%	128	139	11 🖡	8.6%	276	310	34	12.3%
3>2	2,096	2,215	119	5.7% 🖡	0	5	5	#DIV/0!	138	163	25 📕	18.1%	0	14	14 🕴	#DIV/0!
3>4	2,338	835	-1,503	-64.3%	12	13	1	8.3%	129	66	63	-48.8 %	26	14	-12	-46.2%
3>5	1,699	1,021	-678	-3 <mark>9.9%</mark>	96	215	119	1 24.0%	102	85	-17	-167%	164	304	140 📕	85.4%
3>6	3,034	2,513	-521	-17.2	314	119	195	-62.1%	149	135	-14 🗖	-9.4	779	268	-51	-65.6%
3>8	2,784	1,927	-857	-30.8%	6	4	-2	-33.3%	137	114	-23	-16 <mark>.8</mark> %	14	8	-6	-42.9%
4>1	3,027	1,431	4,596	-52.7%	117	73	-44	-37.6%	178	136	-42	-2 <mark>3.6</mark> %	347	165	-182 🗖	-52.4%
4>2	3,270	2,056	-1 <mark>,214</mark>	-37.1%	93	177	84	90.3%	187	161	-26	-13. <mark>9</mark> %	290	474	184 📕	63.4%
4>3	3,113	1,330	-1,783	57.3%	7	84	77	1100.0%	268	157	-111	41.4%	31	220	189 🏴	609.7%
4>5	2,873	862	-2,011	-70.0%	0	50	50	#DIV/0!	152	82	70	-46.1%	0	68	68	#DIV/0!
4>6	4,208	2,354	-1,854	-44.1%	106	105	-1	-0.9%	198	132	-66	- <mark>83.3</mark> %	350	231	-119	-34.0%
4>8	3,958	1,768	-2,190	55.3%	0	6	6	#DIV/0!	186	111	-75	40.3%	0	11	11 🕴	#DIV/0!
5>1	2,208	1,465	-743	-33.7%	71	30	4 1	-57.7%	143	131	-12	-8.4	170	65	-105 🖣	-61.8%
5>2	2,451	2,090	-361	-14.7%	646	472	1 74	-26.9%	153	156	3 🕴	2.0%	1642	1224	-418	-25.5%
5>3	2,294	1,364	-9 30	-40.5%	132	277	145	¤ 09.8%	234	152	-82	35.0%	515	704	189 🏴	36.7%
5>4	3,336	1,315	-2,021	-60.6%	0	3	3	#DIV/0!	253	137	-116	45.8%	0	7	7	#DIV/0!
5>6	3,389	2,387	-1,002	-29.6%	0	24	24	#DIV/0!	164	127	-3	-2 2.6 %	0	51	51	#DIV/0!
5>8	3,139	1,802	-1,337	-4 <mark>2.6%</mark>	0	1	1	#DIV/0!	152	106	-46	- 30.3 %	0	2	2	#DIV/0!
6>1	3,082	2,770	-312	-10.1%	301	516	215	71.4%	163	149	-14 📕	-8.6%	818	1283	465 🧧	56.8%
6>2	3,325	3,347	22	0.7%	3509	3920	411	11.7%	172	124	-48	-2 7.9 %	10078	8099	 1,979	-19.6%
6>3	3,168	2,669	-499	-15.8 <mark>%</mark>	349	150	199	-57.0%	254	171	-83	- <mark>32.7</mark> %	1475	427	-1,048	-71.1%
6>4	4,210	2,621	4,589	-37.7%	185	18	1 67	-90.3%	273	155	-118	43.2%	841	47	-7 <mark>94</mark>	-94.4%
6>5	3,571	2,807	-764	-21.4%	0	14	14	#DIV/0!	246	174	-72	- 29.3 %	0	41	41	#DIV/0!
	4.656	3,713	-943	-20.3%	0	0	0	#DIV/0!	280	204	-76	-271%	0	0	0	#DIV/0!

TOTAL 104,144 74,015 -30,129 -28.9% 11,010 11,333 323 2.9% 6,436 4,830 -1,606 -25.0% 31,077 23,919 -7,158 -23.0%

								00 80	METHING							
Route	Distance	(metres)	Comp	arison	Flows (v	ehicles)	Compa	irison	Time	(secs)	Comp	arison	Weighted tim	e (mins x veh)	Comp	arison
	SATURN	Vissim	Distance (Vissim - SATURN) [1]	% from Saturn [2]	SATURN	Vissim	Flow (Vissim - SATURN) [9]	% from Saturn [10]	SATURN	Vissim	Time (Vissim - SATURN) [11]	% from Saturn [12]	SATURN	Vissim	Weighted Time Comparison (Vissim - SATURN) [13]	% from Saturn [14]
1>2	2,055	2,122	67	3.3%	133	201	68	51.1%	140	196	56	40.0%	310	656	346	111.6%
1>3	1,898	1,396	-502	-26.4%	103	37	-66	-64.1%	203	179	-24	1 1.8%	348	110	-23	-68.4%
1>4	2,940	1,347	4,593	54.2%	147	103	-44	-29.9%	215	167	48 -48	22.3%	527	286	-24	-45.7%
>5	2,301	1,533	-768	-33.4%	132	168	36	27.3%	190	192	2	1.1%	419	537	118	28.2%
>6	3,636	3,025	-61 💶	-16.8	151	207	56	\$ 37.1%	228	244	16	7.0%	574	842	268	46.7%
>8	3,386	2,439	-947	-28.0%	81	130	49	60.5%	203	251	48	23.6%	274	543	269	98.2%
2>1	2,160	2,360	200	9.3%	34	65	31	91.2%	194	496	302	155.7%	110	537	427	388.2%
2>3	1,603	1,653	50	3.1%	0	10	10	#DIV/0!	166	404	238	43.4%	0	67	67	#DIV/0!
<u>2>4</u>	2,645	1,605	-1,040	-3 9.3%	69	120	51	73.9%	178	392	214	120.2%	205	783	578	282.0%
2>5	2,006	1,791	-215	-10.7%	425	227	-198	-46.6%	153	417	264	72.5%	1087	1576	489	45.0%
<u>2>6</u>	3,341	3,177	-164 🖣	-4.9%	2399	2628	229	9.5%	191	118	-73	3 8.2%	7648	5174	-2,47 4	-32.3%
2>8	3,091	3,315	224	7.2%	91	84	-7	-7.7%	166	475	309	186.1%	252	666	414	1 64.3%
3>1	1,853	1,590	-263 🗳	-14.2%	43	59	16	37.2%	177	218	41	23.2%	127	214	87	68.5%
>2	2,096	2,215	119	5.7%	0	5	5	#DIV/0!	206	269	63	3 0.6%	0	22	22	#DIV/0!
3>4	2,338	835	-1,503	-64.3%	10	102	92	920.0%	162	114	48-	29.6%	27	193	166	614.8%
3>5	1,699	1,021	-67	-3 <mark>9.9%</mark>	94	181	87	92.6%	137	139	2	1.5%	215	418	203	94.4%
3>6	3,034	2,513	-521	-17.2	333	129	-204	-61.3%	175	191	16	9.1%	970	410	-560	-57.7%
3>8	2,784	1,927	-857	-30 8%	13	4	-9	-69.2%	150	197	47	<mark>3</mark> 1.3%	32	13	-19	-59.4%
l>1	3,027	1,431	4,596	-52.7%	63	26	-37	-58.7%	211	177	-34	16.1%	221	77	-14	-65.2%
1>2	3,270	2,056	-1 <mark>,214</mark>	-37-1%	95	178	83	87.4%	240	228	-12	-5.0%	379	678	299	78.9%
1>3	3,113	1,330	-1,783	57.3%	6	85	79	1316.7%	301	211	-90	29.9%	30	300	270	900.0%
l>5	2,873	862	-2,011	-70.0%	0	37	37	#DIV/0!	171	98	-73	42.7%	0	60	60	#DIV/0!
1>6	4,208	2,354	-1,854	-44.1%	172	173	1	0.6%	208	150	-58	27.9%	597	432	-16	-27.6%
l>8	3,958	1,768	-2,190	55.3%	0	0	0	#DIV/0!	183	156	-27	1 4.8%	0	0	0	#DIV/0!
i>1	2,208	1,465	-743	-33.7%	77	33	-44	-57.1%	156	159	3	1.9%	200	87	-11	-56.5%
>2	2,451	2,090	-361	-14.7	531	351	– -180	-33.9%	185	211	26	4.1%	1633	1232	-40	-24.6%
i>3	2,294	1,364	-9 30	-40.5%	104	250	1 46	40.4%	245	194	-51	20.8%	425	807	382	· 89.9%
>4	3,336	1,315	-2,021	-60.6%	0	53	53	#DIV/0!	258	182	-76	29.5%	0	160	160	#DIV/0!
5>6	3,389	2,387	-1,002	-29.6%	0	25	25	#DIV/0!	153	132	-21	13.7%	0	55	55	#DIV/0!
5>8	3,139	1,802	-1 <mark>,337</mark>	-4 <mark>2.6%</mark>	0	0	0	#DIV/0!	128	139	11	8.6%	0	0	0	#DIV/0!
i>1	3,082	2,770	-312	-10.1%	224	506	282	125.9%	149	205	5 6	37 .6%	556	1,726	1,17	2 10.4%
i>2	3,325	3,347	22	0.7% 🕴	2729	3462	733	26.9%	178	165	-13	-7.3%	8089	9526	1,43	17.8%
5>3	3,168	2,669	-499	-15.8	271	137	-134	-49.4%	238	239	1	0.4%	1075	547	-528	-49.1%
5>4	4,210	2,621	4,589	-37.7%	166	69	-97	-58.4%	249	227	-22	-8.8%	688	261	-42	-62.1%
6>5	3,571	2,807	-764	-21.4%	0	11	11	#DIV/0!	224	252	28	12.5%	0	46	46	#DIV/0!
6>8	4,656	3,713	-943	-20.3%	0	0	0	#DIV/0!	237	311	74	31.2%	0	0	0	#DIV/0!
otal w	eighted tim	e evcludi	na mainlir	hours									188	239		

TOTAL 104,144 74,015 -30,129 -28.9% 8,696 9,856 1,160 13.3% 6,948 8,095 1,147 16.5% 27,018 29,041 2,023 7.5%

				DO	SOMETHING	minus DO MII	NIMUM						
Route			Flow Differe	ences (vehicles)			Time Differe	nces (seconds	;)	We	ighted Time Ch	anges (mins vehi	cles)
		SATURN [15]		Flow Comparison [16]-[15]	% from Saturn [18]	SATURN [19]	Vissim [20]	Flow Comparison [20]-[19]	% from Saturn [22]	SATURN [23]	Vissim [24]	Flow Comparison [24]-[23]	% from Saturn [26]
				[17]	÷			[21]				[25]	
1>2		-39	-41	-2	5.1%	27	62	35	129.6%	-13	116	129	-992.3%
1>3		-92	-87	5	-5.4%	9	48	9 39	43 <mark>3</mark> .3%	-282	-160	122	-43.3%
1>4		-125	63	188	-150.4%	2	52	50	2500.0%	-438	209	647	- 47.7%
1>5		25	-2	-27	-108.0%	4	58	54	135 <mark>0.0</mark> %	87	157	70	\$ 0.5%
1>6		21	-29	-50	-238.1%	-5	59	6 4	42 80.0%	70	116	46	65.7%
1>8		-1	104	105	####### #	-17	87	1 04	-611.8%	-27	472	4 99	-1848.1%
2>1		-59	-68	-9	15.3%	52	335	283	54 <mark>4</mark> .2%	-110	180	290	-263.6%
2>3		-1	-2	-1	100.0%	42	301	259	61 <mark>6</mark> 7%	-2	46	48	-2400.0%
2>4		-105	81	186	-177.1%	35	304	269	76 <mark>8.</mark> 6%	-209	726	935	447.4%
2>5		-173	-263	-90	52.0%	37	310	273	737.8%	-72	703	775	-1076.4%
2>6		-588	-592	-4	0.7%	28	4	-24	-85.7%	-447	-932	-485	108.5%
2>8		-35	-107	-72	205.7%	16	348	332	2075.0%	-64	262	326	-\$09.4%
3>1		-86	-75	11	-12.8%	49	79	30	61.2%	-149	-96	53	-35.6%
3>2		0	0	0	#DIV/0!	68	106	38	59.9%	0	8	8	#DIV/0!
3>4		-2	89	9 1	-455 0.0%	33	48	15	49.5%	1	179	178	17800.0%
3>5		-2	-34	-32	1600.0%	35	54	19	54.3%	51	114	63	123.5%
3>6		19	10	-9	-47.4%	26	56	30	115.4%	191	142	-49	-25.7%
3>8		7	0	-7	-100.0%	13	83	70	538.5%	18	5	-13	72.2%
4>1		-54	-47	7	-13.0%	33	41	8	24.2%	-126	-88	38	-30.2%
4>2		2	1	-1	-50.0%	53	67	14	26.4%	89	204	115	129.2%
4>3		-1	1	2	-200.0%	33	54	21	63.6%	-1	80	81	8 100.0%
4>5		0	-13	-13	#DIV/0!	19	16	-3	-15.8%	0	-8	-8	#DIV/0!
4>6		66	68	2	3.0%	10	18	8	80.0%	247	201	-46	-18.6%
4>8		0	-6	-6	#DIV/0!	-3	45	48	16 00.0%	0	-11	-11	#DIV/0!
5>1		6	3	-3	-50.0%	13	28	15	115.4%	30	22	-8	-26.7%
5>2		-115	-121	-6	5.2%	32	55	23	71.9%	-9	8	17	-188.9%
5>3		-28	-27	1	-3.6%	11	42	31	281.8%	-90	103	193	-214.4%
5>4		0	50	50	#DIV/0!	5	45	40	800.0%	0	153	153	#DIV/0!
5>6		0	1	1	#DIV/0!	-11	5	16	-145.5%	0	4	4	#DIV/0!
5>8		0	-1	1	#DIV/0!	-24	33	57	-297.5%	0	-2	-2	#DIV/0!
6>1		-77	-10	6 7	-87.0%	-14	56	70	-50.0%	-262	443	705	-269.1%
6>2		-780	-458	322	-41.3%	6	41	35	58 <mark>3</mark> .3%	-1989	1427	3.416	-171.7%
6>3		-78	-13	65	-83.3%	-16	68	84	-525.0%	-400	120	520	- 30.0%
6>4		-19	51	— 03	-368.4%	-24	72	96	-40.0%	-153	214	3 367	-239.9%
6>5		0	-3	-3	#DIV/0!	-22	72	1 00	-444.5%	0	5	5	#DIV/0!
6>8	 ├	0	-3	0	#DIV/0!	-22	107	150	-348.8%	0	0	0	#DIV/0!

TOTAL -2,314 -1,477 837 -36.2% 512 3,265 2,753 537.7% -4,059 5,122 9,181 -226.2%

COMPARATIVE ANALYSIS AT ORSETT COCK JUNCTION

Table 4.7 A13 Orsett Cock junction, 07:00-08:00, 2045

- National Highway's Data and Analysis

- Comparison Analysis completed and presented by Thurrock

								DO M	INIMUM							
Route	Distance	(metres)	Comp	arison	Flows (v	vehicles)	Compa	rison	Time	(secs)	Comp	arison	Weighted tim	e (mins x veh)	Comp	arison
	SATURN	Vissim	Distance (Vissim - SATURN) [1]	% from Saturn [2]	SATURN	Vissim	Flow (Vissim - SATURN) [3]	% from Saturn [4]	SATURN	Vissim	Time (Vissim - SATURN) [5]	% from Saturn [6]	SATURN	Vissim	Weighted Time Comparison (Vissim - SATURN) [7]	% from Saturn [8]
1>2	2,055	2,122	67	3.3%	171	213	42	24.6%	111	127	16	144%	316	451	135	42.7%
1>3	1,898	1,396	-502	-26.4%	75	71	4	-5.3%	165	119	46	27.9%	206	141	-65	-31.6%
1>4	2,940	1,347	4,593	54.2%	102	102	0	0.0%	185	108	77	41.6%	315	184	-131	-41.6%
1>5	2,301	1,533	-768	-33 4%	234	121	1 3	-48.3%	169	135	4 34	20.1%	659	272	-387 📕	-58.7%
>6	3,636	3,025	-61 🗖	-16.8	172	266	94	54.7%	254	260	6	24%	729	1152	423 📕	58.0%
1>8	3,386	2,439	-947	-28.0%	99	52	47	47.5%	240	238	-2	-0.8%	397	207	-190 🖡	47.9%
2>1	2,160	2,360	200	9.3%	236	312	76	32.2%	152	163	11	72%	599	849	250	41.7%
2>3	1,603	1,653	50 🕴	3.1%	0	7	7	#DIV/0!	118	101	17	44.4%	0	12	12	#DIV/0!
2>4	2,645	1,605	-1,040	-3 <mark>9.3%</mark>	56	120	64	14.3%	138	90	48	4 .8%	129	180	51	39.5%
2>5	2,006	1,791	-215 🖣	-10.7%	615	528	6 7	-14.1%	122	116	- 6	-4.9%	1248	1024	-224 🖣	-17.9%
2>6	3,341	3,177	-164 🖡	-4.9%	3398	3702	304	8.9%	207	121	= 86	41.5%	11,729	7461	4,268	-36.4%
2>8	3,091	3,315	224 🖡	7.2% 🖡	300	394	94	31.3%	193	134	59	5 0.6%	965	880	-85 🕴	-8.8%
3>1	1,853	1,590	-263 📕	-14.2	376	140	2 36	-62.8%	137	157	20	146%	859	365	-494 🧧	-57.5%
3>2	2,096	2,215	119	5.7% 🖡	0	3	8	#DIV/0!	138	177	39	28.3%	0	9	9	#DIV/0!
3>4	2,338	835	-1,503	-64.3%	7	59	5 2	742.9%	123	83	40	3 2.5%	14	82	68	485.7%
3>5	1,699	1,021	-678	-39.9%	106	283	177	1 67.0%	106	110	4	38%	188	518	330 🎙	175.5%
3>6	3,034	2,513	-521	-17.2	427	297	30	-30.4%	192	235	43	224%	1365	1161	-204 🚺	-14.9%
3>8	2,784	1,927	-857	-30	35	29	-6	-17.1%	178	213	35	197%	104	103	-1	-1.0%
1>1	3,027	1,431	-1,596	-52.7%	191	108	8 3	-43.5%	301	353	52	173%	960	635	-325 🖣	-33.9%
1>2	3,270	2,056	-1,214	-37.1%	126	190	<mark>6</mark> 4	50.8%	302	373	71	23.5%	634	1182	548 🏴	86.4%
1>3	3,113	1,330	1,783	57.3%	8	19	1	4 37.5%	356	365	9	25%	47	116	69	46.8%
1>5	2,873	862	-2,011	-70.0%	0	51	51	#DIV/0!	271	306	35	129%	0	260	260	#DIV/0!
1>6	4,208	2,354	-1,854	-44.1%	221	159	62	-28.1%	356	431	75	2 🗖 %	1,312	1141	-171	·13.0%
1>8	3,958	1,768	-2,190	55.3%	0	7	7	#DIV/0!	342	409	67	19.6%	0	48	48	#DIV/0!
5>1	2,208	1,465	-743	-33.7%	0	134	134	#DIV/0!	189	309	20	63.5%	0	689	689 🏴	#DIV/0!
i>2	2,451	2,090	-361	-14.7 <mark>%</mark>	607	383	224	-36.9%	190	329	39	73.2%	1918	2103	185 🖡	9.6%
5>3	2,294	1,364	-9 30	-4 <mark>0.5%</mark>	99	60	3 9	-39.4%	244	322	781	32.0%	402	322	-80 🕴	-19.9%
j>4	3,336	1,315	-2,021	-60.6%	0	15	5	#DIV/0!	264	311	47	178%	0	78	78	#DIV/0!
i>6	3,389	2,387	-1,002	-29.6%	10	23	3	4 30.0%	244	387	43	58.6%	41	148	107 🕴	261.0%
j>8	3,139	1,802	-1,337	-42.6%	0	0	0	#DIV/0!	230	365	35	58.7%	0	0	0	#DIV/0!
õ>1	3,082	2,770	-312	-10.1%	242	296	54	22.3%	175	154	21	- 1 2.0%	707	759	52	7.4%
6>2	3,325	3,347	22	0.7%	3566	3711	145	4.1%	176	124	52	2 9.5%	10441	7656	2,785	-26.7%
5>3	3,168	2,669	-499	-15.8 <mark>%</mark>	220	140	80	-36.4%	230	167	63	27.4%	842	389	-453 💶	-53.8%
6>4	4,210	2,621	4,589	-37.7%	56	54	2	-3.6%	250	156	94	5 7.6%	233	140	-93 🕴	-39.9%
6>5	3,571	2,807	-764	-21.4%	0	17	17	#DIV/0!	234	182	52	2.2%	0	52	52	#DIV/0!
6>8	4,656	3,713	-943	-20.397	0	0	0	#DIV/0!	305	286	19	- 6 .2%	0	0	0	#DIV/0!

TOTAL 104,144 74,015 -30,129 -28.9% 11,755 12,066 311 2.6% 7,587 8,016 429 5.7% 37,359 30,769 -6,590 -17.6%

	-							DO SO	METHING							
loute	Distance	(metres)	Comp	arison	Flows (v	ehicles)	Compa	rison	Time	(secs)	Comp	arison	Weighted tim	e (mins x veh)	Comp	arison
	SATURN	Vissim	Distance (Vissim - SATURN) [1]	% from Saturn [2]	SATURN	Vissim	Flow (Vissim - SATURN) [9]	% from Saturn [10]	SATURN	Vissim	Time (Vissim - SATURN) [11]	% from Saturn [12]	SATURN	Vissim	Weighted Time Comparison (Vissim - SATURN) [13]	% from Saturn [14]
>2	2,055	2,122	67	3.3%	131	152	21	16.0%	134	282	148	110.4%	293	715	422 💷	44.0%
>3	1,898	1,396	-502	-26.4%	39	31	-8	-20.5%	180	276	96-	5 <mark>3.3</mark> %	117	143	26	22.2%
>4	2,940	1,347	4,593	54.2%	60	57	-3	-5.0%	195	265	701	35.9%	195	252	57	29.2%
>5	2,301	1,533	-768	-33.4%	158	27	- 131	-82.9%	186	287	101	5 <mark>4.3</mark> %	491	129	-362 🗖	-73.7%
>6	3,636	3,025	-61 💶	-16.8	208	224	16	7.7%	228	348	120-	5 <mark>2.6</mark> %	790	1301	511 💷	64.7%
>8	3,386	2,439	-947	-28.0%	124	147	23	18.5%	200	352	152	76.0%	414	863	449 💷	08.5%
>1	2,160	2,360	200	9.3%	70	140	70	1 00.0%	189	181	48	4.2%	221	423	202	91.4%
>3	1,603	1,653	50	3.1%	0	8	8	#DIV/0!	144	111	5 33	22.9%	0	15	15	#DIV/0!
>4	2,645	1,605	-1,040	-39.3%	25	85	60	240.0%	159	100	5 9	5 7.1%	66	142	76 🕴	1 5.2%
>5	2,006	1,791	-215	-10.7%	356	227	- 129	-36.2%	151	122	2 9	1 9.2%	897	461	-436	-48.6%
>6	3,341	3,177	-164 🖡	-4.9%	2575	2704	129	5.0%	193	120	73	5 7.8%	8267	5420	-2,847	-34.4%
>8	3,091	3,315	224	7.2%	191	210	19	9.9%	165	188	28	18.9%	525	657	132	25.1%
>1	1,853	1,590	-263 🗳	-14.2%	134	17	- 117	-87.3%	171	191	20	1.7%	381	54	-327 🗳	-85.8%
>2	2,096	2,215	119	5.7%	0	4	4	#DIV/0!	188	221	38	7.6%	0	15	15 🕴	#DIV/0!
>4	2,338	835	-1,503	-64.3%	6	58	52	866.7%	141	109	4 32	22.7%	14	106	92 🕴	657.1%
>5	1,699	1,021	-678	-3 <mark>9.9%</mark>	103	250	447	42.7%	132	131	1	0.8%	227	547	320 📕	41.0%
>6	3,034	2,513	-521	-17.2	421	272	- 149	-35.4%	174	193	19	0.9%	1220	875	-345 🗳	-28.3%
>8	2,784	1,927	-857	-30.8%	36	23	-13	-36.1%	146	197	51	34.9%	88	76	-12	-13.6%
>1	3,027	1,431	4,596	-52.7%	243	167	- 76	-31.3%	227	298	11	31.3%	920	828	-92 🕴	4 -10.0%
>2	3,270	2,056	-1,214	-37.1%	108	187	79	73.1%	244	328	84-	34.4%	440	1,022	582 🗖	1 32.3%
>3	3,113	1,330	-1,783	57.3%	12	27	15	1 25.0%	288	322	34	1.8%	58	145	87	450.0%
>5	2,873	862	-2,011	-70.0%	0	49	49	#DIV/0!	189	238	49	25 .9%	0	195	195 👂	#DIV/0!
>6	4,208	2,354	-1,854	-44.1%	424	308	- 116	-27.4%	231	300	691	29 .9%	1629	1539	-90 🌘	-5.5%
>8	3,958	1,768	-2,190	55.3%	2	2	0	0.0%	203	304	101	49.8 %	7	10	3	42.9%
>1	2,208	1,465	-743	-33.7%	0	140	140	#DIV/0!	214	163	5 1	23.8%	0	381	381 📕	#DIV/0!
>2	2,451	2,090	-361	-14.7%	467	283	-184	-39.4%	231	194	5 37	1 6.0%	1801	914	-887	-49.3%
>3	2,294	1,364	-9 30	-40.5%	63	35	-28	-44.4%	275	188	6 7	5 1.6%	289	109	-180 🖣	-62.3%
>4	3,336	1,315	-2,021	-60.6%	0	15	15	#DIV/0!	290	176	1 4	5 89.3%	0	44	44 🕴	#DIV/0!
>6	3,389	2,387	-1,002	-29.6%	0	17	17	#DIV/0!	217	166	5 1	23.5%	0	47	47 🕴	#DIV/0!
>8	3,139	1,802	-1 <mark>,337</mark>	-4 <mark>2.6%</mark>	0	0	0	#DIV/0!	190	170	20	10.5%	0	0	0	#DIV/0!
>1	3,082	2,770	-312	-10.1%	248	362	1 14	46.0%	157	156	4 1	0.6%	648	939	291 📕	44.9%
>2	3,325	3,347	22	0.7% 🕴	2372	2811	439	18.5%	174	134	4 0	23.0%	6883	6286	-597💶	-8.7%
i>3	3,168	2,669	-499	-15.8%	205	166	-39	-19.0%	217	180	3 7	1 7.1%	742	498	-244 📕	-32.9%
j>4	4,210	2,621	-1,589	-37.7%	48	46	-2	-4.2%	231	169	6 2	26.8%	185	129	-56	- 30.3%
i>5	3,571	2,807	-764	-21.4%	0	15	15	#DIV/0!	222	191	3 1	4.0%	0	48	48	#DIV/0!
i>8	4,656	3,713	-943	-20.3%	0	0	0	#DIV/0!	236	256	20	8.5%	0	0	0	#DIV/0!

TOTAL 104,144 74,015 -30,129 -28.9% 8.829 9,266 437 4.9% 7,112 7,607 495 7.0% 27,808 25,328 -2,480 -8.9%

				DO S	OMETHING	minus DO MII	NIMUM						
Route			Flow Differe	nces (vehicles)			Time Differe	nces (seconds)	We	ighted Time Ch	anges (mins vehi	cles)
		SATURN [15]	Vissim [16]	Flow Comparison [16]-[15]	% from Saturn [18]	SATURN [19]	Vissim [20]	Flow Comparison [20]-[19]	% from Saturn [22]	SATURN [23]	Vissim [24]	Flow Comparison [24]-[23]	% from Saturn [26]
				[17]				[21]				[25]	
1>2		-40	-61	21	52 5%	23	155	132	573.9%	-23	264	287	247.8%
1>3		-36	-40	-4	1111%	15	157	142	94 <mark>6.7%</mark>	-89	2	91	102.2%
1>4		-42	-45	-3	71%	10	157	147	1470.0%	-120	68	188	156.7%
1>5		-76	-94	18	23.7%	17	152	135	794.1%	-168	-143	25	-14.9%
1>6		36	-42	1 78	-246.7%	-26	88	114	438.5%	61	149	88	44.3%
1>8		25	95	70	280.0%	-40	114	154	\$ 85.0%	17	656	63 9	3758.8%
2>1		-166	-172	-6	3 6%	37	18	-19	-\$1.4%	-378	-426	48	12.7%
2>3		0	1	1	#DIV/0!	26	10	-16	-61.5%	0	3	3	#DIV/0!
2>4		-31	-35	4-4	12.9%	21	10	-11	- \$ 2.4%	-63	-38	25	439.7%
2>5		-259	-301	42	16.2%	29	6	- 1 3	-19.3%	-351	-563	-212	60.4%
2>6		-823	-998	175	21:3%	-14	-1	13	-\$2.9%	-3462	-2041	1,421	41.0%
2>8		-109	-184	4 -75	68 8%	-28	54	82	-292.9%	-440	-223	217	49.3%
3>1		-242	-123	119	-49.2%	34	34	d	0.0%	-478	-311	167	434.9%
3>2		0	1	1	#DIV/0!	50	44	-6	- 2.0%	0	6	6	#DIV/0!
3>4		-1	-1	0	0,0%	18	26	8	44.4%	0	24	24	#DIV/0!
3>5		-3	-33	4 30	1000.0%	26	21	-\$	- 9.2%	39	29	-10	-25.6%
3>6		-6	-25	1 9	3167%	-18	-42	- 1 4	133.3%	-145	-286	- 141	97.2%
3>8		1	-6	- 7	-70 0.0%	-32	-16	16	-\$0.0%	-16	-27	-11	68.8%
4>1		52	59	7	13.5%	-74	-55	19	-25.7%	-40	193	233	582.5%
4>2		-18	-3	15	-88.3%	-58	-45	13	-22.4%	-194	-160	34	17.5%
4>3		4	8	4	100.0%	-68	-43	25	-\$6.8%	11	29	18	63.6%
4>5		0	-2	-2	#DIV/0!	-82	-68	14	-17.1%	0	-65	65	#DIV/0!
4>6		203	149	5 4	-26.6%	-125	-131	-6	4.8%	317	398	81	25.6%
4>8		2	-5	-7	-350.0%	-139	-105	34	-24.5%	7	-38	-45	642.9%
5>1		0	6	6	#DIV/0!	25	-146	11	6 84.0%	0	-308	4 -308	#DIV/0!
5>2		-140	-100	40	-28.6%	41	-135	17 6	429.3%	-117	-1189	1,072	916.2%
5>3		-36	-25	11	-39.6%	31	-134	16 5	5 32.3%	-113	-213	-100	88.5%
5>4		0	0	0	#DIV/0!	26	-135	16 1	6 19.2%	0	-34	-34	#DIV/0!
5>6		-10	-6	4	-40.0%	-27	-221	19 4	718.5%	-41	-101	-60	46.3%
5>8		0	0	0	#DIV/0!	-40	-195	15 5	387.5%	0	0	0	#DIV/0!
6>1		6	66	6 0	1000.0%	-18	2	20	-111.1%	-59	180	239	405.1%
6>2		-1,194	-900	294	-24.6%	-2	10	12	-6 00.0%	-3558	-1370	2,188	61.5%
6>3		-15	26	4 1	-273.3%	-13	13	26	-200.0%	-100	109	209	209.0%
6>4		-8	-8	0	0,0%	-19	13	32	- 1 68.4%	-48	-11	37	77.1%
6>5		0	-2	-2	#DIV/0!	-12	9	2	-175.0%	0	-4	-4	#DIV/0!
6>8		0	0	0	#DIV/0!	-69	-30	39	-\$6.5%	0	0	0	#DIV/0!

TOTAL -2,926 -2,800 126 4.3% -475 -409 66 -13.9% -9,551 -5,441 4,110 -43.0%

COMPARATIVE ANALYSIS AT ORSETT COCK JUNCTION

Table 4.8 A13 Orsett Cock junction, 17:00-18:00, 2045

- National Highway's Data and Analysis

- Comparison Analysis completed and presented by Thurrock

								DO M	INIMUM							
Route	Distance	(metres)	Comp	arison	Flows (v	ehicles)	Compa	rison	Time	(secs)	Comp	arison	Weighted tim	e (mins x veh)	Comp	arison
	SATURN	Vissim	Distance (Vissim - SATURN) [1]	% from Saturn [2]	SATURN	Vissim	Flow (Vissim - SATURN) [3]	% from Saturn [4]	SATURN	Vissim	Time (Vissim - SATURN) [5]	% from Saturn [6]	SATURN	Vissim	Weighted Time Comparison (Vissim - SATURN) [7]	% from Saturn [8]
1>2	2,055	2,122	67	3.3%	209	283	74	35.4%	116	138	22 💵	19.0%	403	653	250 📮	62.0%
1>3	1,898	1,396	-502	-26.4%	232	165	6 7	-28.9%	210	128	-82	-39.0 %	814	353	-461💻	-56.6%
1>4	2,940	1,347	4,593	54.2%	320	48	272	-85.0%	232	113	-119	51.3 %	1,238	91	-1,447	-92.6%
1>5	2,301	1,533	-768	-33.4%	135	202	67	49.6%	206	136	701	-84.0%	463	458	-5	-1.1%
>6	3,636	3,025	-61 🗖	-16.8	55	163	108	4 96.4%	251	185	-66	-2 6.3 %	230	502	272 📕	1 18.3%
1>8	3,386	2,439	-947	-28.0%	97	40	5 7	-58.8%	239	164	175	-31.4%	386	109	-277 🗖	-71.8%
2>1	2,160	2,360	200	9.3%	115	156	41	35.7%	145	165	20 📕	13.8%	278	428	150	54.0%
2>3	1,603	1,653	50 🕴	3.1%	0	10	10	#DIV/0!	125	106	-19	-15 <mark>-2</mark> %	0	18	18	#DIV/0!
2>4	2,645	1,605	-1,040	-3 <mark>9.3%</mark>	179	38	4 141	-78.8%	147	91	-56	38.1%	439	58	-381	-86.8%
2>5	2,006	1,791	-215 🖣	-10.7%	691	590	4 101	-14.6%	121	114	-7 🖡	-5.8%	1392	1123	-269 🗳	-19.3%
2>6	3,341	3,177	-164 🖡	-4.9%	3348	3580	232	6.9%	166	115	-54	-30.7%	9,279	6859	-2,420	-26.1%
2>8	3,091	3,315	224 🖡	7.2% 🖡	149	214	65	43.6%	154	128	-26	-16 .9 %	381	456	75 🕴	19.7%
3>1	1,853	1,590	-263 📕	-14.2	160	169	9	5.6%	131	144	13 🖡	9.9%	348	406	58	16.7%
3>2	2,096	2,215	119	5.7% 🖡	0	5	5	#DIV/0!	140	172	32 💷	22.9	0	14	14 🕴	#DIV/0!
3>4	2,338	835	-1,503	-64.3%	13	15	2	15.4%	133	71	-62	46.6%	29	18	-11 🕴	-37.9%
3>5	1,699	1,021	-678	-39.9%	108	230	122	13.0%	106	94	-12	-11.3%	191	358	167 👂	87.4%
3>6	3,034	2,513	-521	-17.2	338	143	195	-57.7%	152	142	-10	-6.6	855	339	-516	-60.4%
3>8	2,784	1,927	-857	-30 8%	7	4	4-3	-42.9%	139	121	-18	-12.9%	16	8	-8	-50.0%
1>1	3,027	1,431	4,596	-52.7%	143	100	43	-30.1%	181	201	20 📕	11.0%	432	334	-98	-22.7%
l>2	3,270	2,056	-1,214	-37.1%	115	204	89	77.4%	190	229	39 💷	20.5%	365	777	412 📕	1 12.9%
I>3	3,113	1,330	1,783	57.3%	7	87	80	1142.9%	285	219	-66	-2 3.2 %	33	317	284 📕	860.6%
1>5	2,873	862	-2,011	-70.0%	0	54	5 4	#DIV/0!	157	150	-7 🕻	-4.5%	0	135	135 👂	#DIV/0!
1>6	4,208	2,354	-1,854	-44.1%	127	131	4	3.1%	202	199	-3 (-1.5%	428	434	6 🕴	1.4%
l>8	3,958	1,768	-2,190	55.3%	0	6	6	#DIV/0!	189	178	-11	-5.8%	0	18	18	#DIV/0!
j>1	2,208	1,465	-743	-33.7%	20	2	18	-90.0%	146	131	-15	-10.3%	49	4	-45 🕴	-91.8%
j>2	2,451	2,090	-361	-14.7%	690	519	1 71	-24.8%	156	159	3	1.9%	1789	1380	-409	-22.9%
j>3	2,294	1,364	-930	-40.5%	129	275	46	13.2%	250	149	-101	40.4%	538	685	147 📕	27.3%
>4	3,336	1,315	-2,021	-60.6%	0	4	4	#DIV/0!	272	134	-138	50.7 %	0	9	9	#DIV/0!
j>6	3,389	2,387	-1,002	-29.6%	0	24	24	#DIV/0!	167	130	-374	-2 2.2 %	0	52	52	#DIV/0!
5>8	3,139	1,802	-1[337]	-42.6%	0	1	1	#DIV/0!	155	109	-461	-29.7%	0	2	2	#DIV/0!
5>1	3,082	2,770	-312	-10.1%	316	532	216	68.4%	164	150	-14	-8.5%	866	1328	462 🗖	53.3%
5>2	3.325	3.347	22	0.7%	3618	4026	408	11.3%	174	125	-49	-28.2%	10479	8380	-2.099	-20.0%
3>3	3,168	2,669	-499	-15.8%	304	1020	197	-64.8%	269	168	-101	37.5%	1361	299	-1,062	-78.0%
)>4	4,210	2,621	4.589	-377%	207	22	185	-89.4%	290	153	-137	47.2%	1001	56	-945	-94.4%
)>5	3.571	2.807	-764	-21.4%	0	13	13	#DIV/0!	264	176	-88	-83.3%	0	38	38	#DIV/0!
5>8	4,656	3,713	-943	-20.3%	0 0	0	0	#DIV/0!	297	203	-94	-31.6%	0	0	0	#DIV/0!
-	.,	-,				-							-		-	

TOTAL 104,144 74,015 -30,129 -28.9% 11,832 12,162 330 2.8% 6,721 5,290 -1,431 -21.3% 34,083 26,499 -7,584 -22.3%

								DO SO	METHING							
Route	Distance	(metres)	Comp	arison	Flows (v	ehicles)	Compa	rison	Time	(secs)	Comp	arison	Weighted tim	e (mins x veh)	Comp	arison
	SATURN	Vissim	Distance (Vissim - SATURN) [1]	% from Saturn [2]	SATURN	Vissim	Flow (Vissim - SATURN) [9]	% from Saturn [10]	SATURN	Vissim	Time (Vissim - SATURN) [11]	% from Saturn [12]	SATURN	Vissim	Weighted Time Comparison (Vissim - SATURN) [13]	% from Saturn [14]
1>2	2,055	2,122	67	3.3%	112	161	49	43.8%	150	428	278	185.3%	281	1,147	866	308.2%
1>3	1,898	1,396	-502	-26.4%	112	43	-69	-61.6%	219	413	194	88.6%	410	296	-114	-27.8%
1>4	2,940	1,347	4,593	54.2%	164	113	-51	-31.1%	232	402	170	73. 3%	634	757	123	19.4%
1>5	2,301	1,533	-768	-33.4%	158	175	17	10.8%	207	427	220	106.3%	546	1245	699	128.0%
>6	3,636	3,025	-61 💶	-16.8 <mark>%</mark>	171	199	28	16.4%	244	480	236	<mark>96.7</mark> %	696	1593	897	128.9%
1>8	3,386	2,439	-947	-28.0%	95	133	38	40.0%	218	486	268	122.9%	345	1078	733	212.5%
2>1	2,160	2,360	200	9.3%	22	55	33	150.0%	213	371	158	74.2%	78	341	263	4 337.2%
2>3	1,603	1,653	50	3.1%	0	10	10	#DIV/0!	183	261	78	42.6%	0	43	43	#DIV/0!
<u>2>4</u>	2,645	1,605	-1,040	-39.3%	64	117	53	82.8%	196	249	53	27.0%	209	486	27	132.5%
2>5	2,006	1,791	-215	-10.7%	400	209	-191	-47.8%	171	274	103	60.2%	1139	955	-184	-16.2%
2>6	3,341	3,177	-164 🖡	-4.9%	2558	2699	141	5.5%	208	119	-89	42.8%	8855	5345	-3,5 10	-39.6%
2>8	3,091	3,315	224	7.2%	70	65	-5	-7.1%	181	333	152	84.0%	212	361	149	70.3%
3>1	1,853	1,590	-263 🗳	-14.2%	29	57	28	96.6%	194	235	4 1	21.1%	94	224	130	138.3%
3>2	2,096	2,215	119	5.7%	0	5	5	#DIV/0!	237	282	45	19.0%	0	23	23	#DIV/0!
3>4	2,338	835	-1,503	-64.3%	12	104	92	76 6.7%	177	113	5 -64	36.2%	35	196	161	460.0%
}>5	1,699	1,021	-678	-3 <mark>9.9%</mark>	116	202	86	74.1%	152	138	-14	-9.2%	294	466	172	58.5%
3>6	3,034	2,513	-521	-17.2%	305	109	-196	-64.3%	189	192	3	1.6%	961	348	-643	-63.8%
3>8	2,784	1,927	-857	-30.8%	10	1	-9	-90.0%	163	197	34	20.9%	27	3	-24	-88.9%
1>1	3,027	1,431	4,596	-52.7%	99	53	-46	-46.5%	219	267	4 8	21.9%	361	236	-125	-34.6%
l>2	3,270	2,056	-1 <mark>,214</mark>	-37-1%	100	185	85	85.0%	261	313	5 2	1 9.9%	436	966	530	121.6%
1>3	3,113	1,330	1,783	57.3%	4	85	81	2025.0%	328	299	4 -29	-8.8%	22	424	402	1827.3%
l>5	2,873	862	-2,011	-70.0%	0	37	37	#DIV/0!	177	170	-7	4.0%	0	105	105	#DIV/0!
1>6	4,208	2,354	-1,854	-44.1%	270	278	8	3.0%	214	223	9	4.2%	962	1034	72	7.5%
l>8	3,958	1,768	-2,190	55.3%	1	0	-1	-100.0%	188	229	41	21.8%	3	0	-3	-100.0%
j>1	2,208	1,465	-743	-33 <mark>.7%</mark>	9	0	- 9	-100.0%	162	188	26	6.0%	24	0	-24	-100.0%
>2	2,451	2,090	-361	-14.7	530	350	– -180	-34.0%	204	234	30	4.7%	1806	1367	-4 3 9	-24.3%
i>3	2,294	1,364	-9 30	-40.5%	114	262	48	129.8%	271	220	-51	1 8.8%	516	961	445	86.2%
>4	3,336	1,315	-2,021	-60.6%	0	52	52	#DIV/0!	284	209	-75	2 6.4%	0	181	18	#DIV/0!
5>6	3,389	2,387	-1,002	-29.6%	0	25	25	#DIV/0!	157	144	-13	-8.3%	0	60	60	#DIV/0!
5>8	3,139	1,802	-1 <mark>,337</mark>	-4 <mark>2.6%</mark>	0	0	0	#DIV/0!	131	150	19	4.5%	0	0	0	#DIV/0!
i>1	3,082	2,770	-312	-10.1%	243	518	275	113.2%	155	345	190	122.6%	626	2,982	2,356	5 76.4%
6>2	3,325	3,347	22	0.7% 🕴	2842	3538	696	24.5%	197	173	-24	12.2%	9325	10215	890	9.5%
5>3	3,168	2,669	-499	-15.8	279	136	-143	-51.3%	263	378	115	43.7%	1223	856	-3 6 7	-30.0%
<u>3>4</u>	4,210	2,621	4,589	-37.7%	173	76	-97	-56.1%	274	366	9 2	3 3.6%	790	464	-3 2 6	-41.3%
3>5	3,571	2,807	-764	-21.4%	0	12	12	#DIV/0!	249	391	142	57 .0%	0	78	78	#DIV/0!
3>8	4.656	3,713	-943	-20.3%	0	0	0	#DIV/0!	260	450	190	73.1%	0	0	0	#DIV/0!

TOTAL 104,144 74,015 -30,129 -28.9% 9,062 10,064 1,002 11.1% 7,528 10,149 2,621 34.8% 30,910 34,836 3,926 12.7%

				DOS	SOMETHING I	minus DO MII	NIMUM						
Route			Flow Differe	nces (vehicles)			Time Differe	nces (seconds)	We	ighted Time Ch	anges (mins vehi	cles)
		SATURN [15]	Vissim [16]	Flow Comparison [16]-[15]	% from Saturn [18]	SATURN [19]	Vissim [20]	Flow Comparison [20]-[19]	% from Saturn [22]	SATURN [23]	Vissim [24]	Flow Comparison [24]-[23]	% from Saturn [26]
				[17]				[21]				[25]	
1>2		-97	-122	-25	25.8%	34	290	256	752.9%	-122	494	=6 16	-5 <mark>0</mark> 4.9%
1>3		-120	-122	-2	1.7%	9	285	276	3066.7%	-404	-57	347	-85.9%
1>4		-156	65	221	-141.7%	0	289	289	#DIV/0!	-604	666	1,270	-210.3%
1>5		23	-27	-50	-217.4%	1	291	290	29000.0%	83	787	704	848.2%
1>6		116	36	-80	-69.0%	-7	295	302	4314.3%	466	1091	625	134.1%
1>8		-2	93	95	-475 <mark>0.0%</mark>	-21	322	343	4633.3%	-41	969	1,010	
2>1		-93	-101	-8	8.6%	68	206	138	202.9%	-200	-87	113	-56.5%
2>3		0	0	0	#DIV/0!	58	155	97	167.2%	0	25	25	#DIV/0!
2>4		-115	79	194	-168.7%	49	158	1 09	222.4%	-230	428	658	-286.1%
2>5		-291	-381	-90	30.9%	50	160	= 10	220.0%	-253	-168	85	-35.6%
2>6		-790	-881	= -91	11.5%	42	4	-38	-90.5%	-424	-1514	— -1,090	2571%
2>8		-79	-149	-70	88.6%	27	205	178	659.3%	-169	-95	74	-43.8%
3>1		-131	-112	19	-14.5%	63	91	28	44.4%	-254	-182	72	-28.3%
3>2		0	0	0	#DIV/0!	97	110	13	13.4%	0	9	9	#DIV/0!
3>4		-1	89	90	-9000.0%	44	42	-2	-4.5%	6	178	172	2866.7%
3>5		8	-28	-36	-450.0%	46	44	-2	-4.3%	103	108	5	4.9%
3>6		-33	-34	-1	3.0%	37	50	13	35.1%	106	9	-97	-91.5%
3>8		3	-3	-6	-200.0%	24	76	52	216.7%	11	-5	-16	-145.5%
4>1		-44	-47	- -3	6.8%	38	66	28	73.7%	-71	-98	-27	380%
4>2		-15	-19	-4	26.7%	71	84	13	18.3%	71	189	118	166.2%
4>3		-3	-2	1	-33.3%	43	80	37	86.0%	-11	107	118	-1072.7%
4>5		0	-17	-17	#DIV/0!	20	20	0	0.0%	0	-30	-30	#DIV/0!
4>6		143	147	4	2.8%	12	24	12	100.0%	534	600	66	124%
4>8		1	-6	-7	-700.0%	-1	51	52	5 200.0%	3	-18	-21	-700.0%
5>1		-11	-2	9	-81.8%	16	57	41	256.3%	-25	-4	21	-84.0%
5>2		-160	-169	-9	5.6%	48	75	27	56.3%	17	-13	-30	-176.5%
5>3		-15	-13	2	-13.3%	21	71	50	238.1%	-22	276	298	-4344.5%
5>4		0	48	48	#DIV/0!	12	75	6 3	525.0%	0	172	172	#DIV/0!
5>6		0	1	1	#DIV/0!	-10	14	24	240.0%	0	8	8	#DIV/0!
5>8		0	-1	! -1	#DIV/0!	-24	41	6 5	270.8%	0	-2	-2	#DIV/0!
6>1		-73	-14	59	-80.8% 🕴	-9	195	204	2266.7%	-240	1654	1,894	-789.2%
6>2		-776	-488	288	-37.1%	23	48	25	108.7%	-1154	1835	2,989	-259.0%
6>3		-25	29	54	-216.0%	-6	210	216	\$ 600.0%	-138	557	695	-5 <mark>0</mark> 8.6%
6>4		-34	54	88	-258.8%	-16	213	229	4431.3%	-211	408	619	-298.4%
6>5		0	-1	-1	#DIV/0!	-15	215	230	1533.3%	0	40	40	#DIV/0!
6>8		0	0	0	#DIV/0!	-37	247	284	767.6%	0	0	0	#DIV/0!

TOTAL -2,770 -2,098 672 -24.3% 807 4,859 4,052 502.1% -3,173 8,337 11,510 -362.7%

COMPARATIVE ANALYSIS AT ORSETT COCK - Summary

Table 4.5 A13 Orsett Cock junction, 07:00-08:00, 2030

Route	Distance	(metres)	Comp	arison	Flows (v	vehicles)	Compa	rison	Time	secs)	Comp	arison	Weighted time	e (mins x veh)	Comp	arison
	SATURN	Vissim	Distance (Vissim - SATURN) [1]	% from Saturn [2]	SATURN		Flow (Vissim - SATURN) [3]	% from Saturn [4]	SATURN	Vissim	Time (Vissim - SATURN) [5]	% from Saturn [6]	SATURN	Vissim	Weighted Time Comparison (Vissim - SATURN) [7]	% from Saturn [8]
DO MINIMUM	104,144	74,015	-30,129	-28.9%	10,891	11,389	498	4.6%	6,627	5,564	-1,063	-16.0%	32,199	25,155	-7,044	-21.9%
DO SOMETHING	104,144	74,015	-30,129	-28.9%	8,244	8,969	725	8.8%	6,554	6,292	-262	-4.0%	24,448	21,843	-2,605	-10.7%

Table 4.6 A13 Orsett Cock junction, 17:00-18:00, 2030

Route	Distance	(metres)	Comp	arison	Flows (v	vehicles)	Compa	rison	Time	(secs)	Comp	arison	Weighted time	e (mins x veh)	Comp	arison
	SATURN	Vissim	Distance (Vissim - SATURN) [1]	% from Saturn [2]	SATURN		Flow (Vissim - SATURN) [3]	% from Saturn [4]	SATURN	Vissim	Time (Vissim - SATURN) [5]	% from Saturn [6]	SATURN	Vissim	Weighted Time Comparison (Vissim - SATURN) [7]	% from Saturn [8]
DO MINIMUM	104,144	74,015	-30,129	-28.9%	11,010	11,333	323	2.9%	6,436	4,830	-1,606	-25.0%	31,077	23,919	-7,158	-23.0%
DO SOMETHING	104,144	74,015	-30,129	-28.9%	8,696	9,856	1,160	13.3%	6,948	8,095	1,147	16.5%	27,018	29,041	2,023	7.5%

Table 4.7 A13 Orsett Cock junction, 07:00-08:00, 2045

Route	Distance	(metres)	Comp	arison	Flows (v	vehicles)	Compa	rison	Time	(secs)	Comp	arison	Weighted time	e (mins x veh)	Comp	arison
	SATURN	Vissim	Distance (Vissim - SATURN) [1]	% from Saturn [2]	SATURN		Flow (Vissim - SATURN) [3]	% from Saturn [4]	SATURN	Vissim	Time (Vissim - SATURN) [5]	% from Saturn [6]	SATURN	Vissim	Weighted Time Comparison (Vissim - SATURN) [7]	% from Saturn [8]
DO MINIMUM	104,144	74,015	-30,129	-28.9%	11,755	12,066	311	2.6%	7,587	8,016	429	5.7%	37,359	30,769	-6,590	-17.6%
DO SOMETHING	104,144	74,015	-30,129	-28.9%	8,829	9,266	437	4.9%	7,112	7,607	495	7.0%	27,808	25,328	-2,480	-8.9%

Table 4.8 A13 Orsett Cock junction, 17:00-18:00, 2045

Route	Distance	(metres)	Comp	arison	Flows (v	vehicles)	Compa	rison	Time	(secs)	Comp	arison	Weighted time	e (mins x veh)	Comp	arison
	SATURN	Vissim	Distance (Vissim - SATURN) [1]	% from Saturn [2]	SATURN		Flow (Vissim - SATURN) [3]	% from Saturn [4]	SATURN	Vissim	Time (Vissim - SATURN) [5]	% from Saturn [6]	SATURN	Vissim	Weighted Time Comparison (Vissim - SATURN) [7]	% from Saturn [8]
DO MINIMUM	104,144	74,015	-30,129	-28.9%	11,832	12,162	330	2.8%	6,721	5,290	-1,431	-21.3%	34,083	26,499	-7,584	-22.3%
DO SOMETHING	104,144	74,015	-30,129	-28.9%	9,062	10,064	1,002	11.1%	7,528	10,149	2,621	34.8%	30,910	34,836	3,926	12.7%

Thurrock Council Comments on Applicant's Submissions at Deadline 1 and 2 (D1 & D2) – Lower Thames Crossing TRO10032-003072-915 Localised Traffic Modelling – Summary Review – Appendix E

Lower Thames Crossing

Annex 3 Orsett Cock VISSIM Model v1.5 and v2.4 Differences

Lower Thames Crossing

Orsett Cock VISSIM Modelling Comparison of VISSIM Model Versions: v1.5 and v2.4

On behalf of Thurrock Council

Project Ref: 332510911/001 | Rev: AA | Date: August 2023

Registered Office: Buckingham Court Kingsmead Business Park, London Road, High Wycombe, Buckinghamshire, HP11 1JU Office Address: Caversham Bridge House, Waterman Place, Reading, Berkshire RG1 8DN T: +44 (0)118 950 0761 E: Reading.uk@stantec.com

Document Control Sheet

Project Name:	Lower Thames Crossing
Project Ref:	Stantec LTC Review of Modelling Document
Report Title:	Orsett Cock and The Manorway Modelling
Doc Ref:	
Date:	August 2023

	Name	Position	Signature	Date
Prepared by:	Grant Paterson	Principal Transport Planner	GP	01/08/2023
Reviewed by:	Nadia Lyubimova	Director	NL	17/08/2023
Approved by:	Nadia Lyubimova	Director	NL	17/08/2023
	For and	on behalf of Stantec	UK Limited	1

	Revision	Date	Description	Prepared	Reviewed	Approved
ľ						

This report has been prepared by Stantec UK Limited ('Stantec') on behalf of its client to whom this report is addressed ('Client') in connection with the project described in this report and takes into account the Client's particular instructions and requirements. This report was prepared in accordance with the professional services appointment under which Stantec was appointed by its Client. This report is not intended for and should not be relied on by any third party (i.e. parties other than the Client). Stantec accepts no duty or responsibility (including in negligence) to any party other than the Client and disclaims all liability of any nature whatsoever to any such party in respect of this report.

Contents

Introdu	iction	1
1.1	Purpose of Document	1
1.2	NH Document provision	1
Localis	sed Traffic Modelling Appendix B – Orsett Cock LMVR	2
2.1	Introduction	2
2.2	Document Comparison	2
2.3	Summary	2
Traffic	Operational Appraisal – VISSIM Local Model Validation Report (LMVR)	3
3.1	Introduction	3
3.2	Purpose	3
3.3	Report Summary	3
3.4	Conclusion	7
Orsett	Cock Forecast VISSIM Models and Documentation	9
4.1	Introduction	9
4.2	Model Structure Differences	9
4.3	Modification Analysis 1	10
4.4	Modification summary1	17
4.5	Versions of LTAM 1	17
4.6	Model Outputs 1	17
4.7	Summary 1	18
Appen	dix H	1
5.2	Appendix H Summary	2
	 1.1 1.2 Localis 2.1 2.2 2.3 Traffic 3.1 3.2 3.3 3.4 Orsett 4.1 4.2 4.3 4.4 4.5 4.6 4.7 Append 	1.2 NH Document provision Localised Traffic Modelling Appendix B – Orsett Cock LMVR 2.1 Introduction 2.2 Document Comparison 2.3 Summary Traffic Operational Appraisal – VISSIM Local Model Validation Report (LMVR) 3.1 Introduction 3.2 Purpose 3.3 Report Summary 3.4 Conclusion Orsett Cock Forecast VISSIM Models and Documentation 4.1 Introduction 4.2 Model Structure Differences 4.3 Modification summary 4.4 Modification summary 4.5 Versions of LTAM 4.6 Model Outputs 4.7 Summary

Figures

igure 3-1 Lower Thames Crossing Design Process5
igure 3-2 Appendix G Base Model Study Area8
igure 3-3 Appendix B Traffic Operations Study Area8
igure 4-1 Scenario and Modifications11
igure 4-2 2030 DM AM Peak Matrix Amendments 11
igure 4-3 Conflict Marker Amendments
igure 4-4 2030 DS AM Peak Matrix Amendments 13
igure 4-5 2030 DS PM Peak Matrix Amendments 13
igure 4-6 2030 DM PM Peak Matrix Amendments14
igure 4-7 2045 DM AM Peak Matrix Amendments 15
igure 4-8 2045 DM PM Peak Matrix Amendments
igure 4-9 2045 DS AM Peak Matrix Amendments 16
igure 4-10 2045 DS PM Peak Matrix Amendments 17

Tables

No table of figures entries found.

Appendices

No table of contents entries found.

this page is intentionally black

1 Introduction

1.1 **Purpose of Document**

- 1.1.1 In support of continuing work for Thurrock Council, Stantec were commissioned to review the July 2023 documentation relating to Orsett Cock VISSIM microsimulation modelling. Transport models have been developed by National Highways (NH) and their consultant Jacobs with Stantec undertaking subsequent reviews and appraisal testing over the period of this study. This document focuses on the July 2023 reporting provided by NH for the Orsett Cock junction at Deadline 1.
- 1.1.2 This note provides an overview of the detail regarding the forecast models developed by NH and provides an independent review of the forecast microsimulation models in VISSIM.

1.2 NH Document provision

- 1.2.1 Relevant to Orsett Cock microsimulation modelling NH has provided the following documents:
 - Localised Traffic Modelling Report (<u>REP1-187</u>)
 - Localised Traffic Modelling Appendix B Orsett Cock LMVR (<u>REP1-188</u>)
 - Localised Traffic Modelling Appendix C Orsett Cock Forecasting Report (<u>REP1-189</u>)
 - Localised Traffic Modelling Appendix G Traffic Operational Appraisal VISSIM Local Model Validation Report (LMVR) (<u>REP1-193</u>)
 - Localised Traffic Modelling Appendix H Traffic Operational Appraisal VISSIM Forecasting Report (<u>REP1-194</u>)

2 Localised Traffic Modelling Appendix B – Orsett Cock LMVR

2.1 Introduction

- 2.1.1 This section provides a review of the July 2023 Orsett Cock LMVR and compare it with the previous May 2022 NH document, which was issued to Thurrock, to identify any changes.
- 2.1.2 The July 2023 updated document is location on the Planning Inspectorate website (<u>REP1-188</u>). The associated document reference is Planning Inspectorate Scheme Ref: TR010032 Examination Document Ref: TR010032/EXAM/9.15.
- 2.1.3 The May 2022 document provided by NH is named as Orsett Cock VISSIM Local Model Validation Report, with the references Planning Inspectorate Scheme Ref: TR010032, Document Ref: HE540039-CJV-GEN-A13-REP-TRA-00001.

2.2 Document Comparison

- 2.2.1 Inconsistencies are noted between both documents; however, these are mainly confined to marginal revisions to grammar and descriptive text.
- 2.2.2 The second chapter deals with Modelling Scope. Again, there are changes in the descriptive language used, however the image of the traffic operation study area remains consistent.
- 2.2.3 Chapter Three relates to Traffic Data Analysis. There are changes in the descriptive language used, but the narrative of the chapter remains consistent.
- 2.2.4 Chapter Four covers the Technical Guidelines, again the narrative is consistent with marginal amendments to the wording.
- 2.2.5 The Fifth chapter discusses VISSIM Model Calibration with Chapter Six referring to the Model Validation Results, with the same outcomes defined.
- 2.2.6 Conclusions are provided in Chapter seven with a consistent message being provided.

2.3 Summary

2.3.1 There are marginal changes between the June 2022 report, which was previously reviewed by Thurrock, and July 2023 report. They are confined to additional reporting text. A comparison of the model output in terms of network performance statistics, journey time and flow analysis, show consistent model outputs.

Stantec

3 Traffic Operational Appraisal – VISSIM Local Model Validation Report (LMVR)

3.1 Introduction

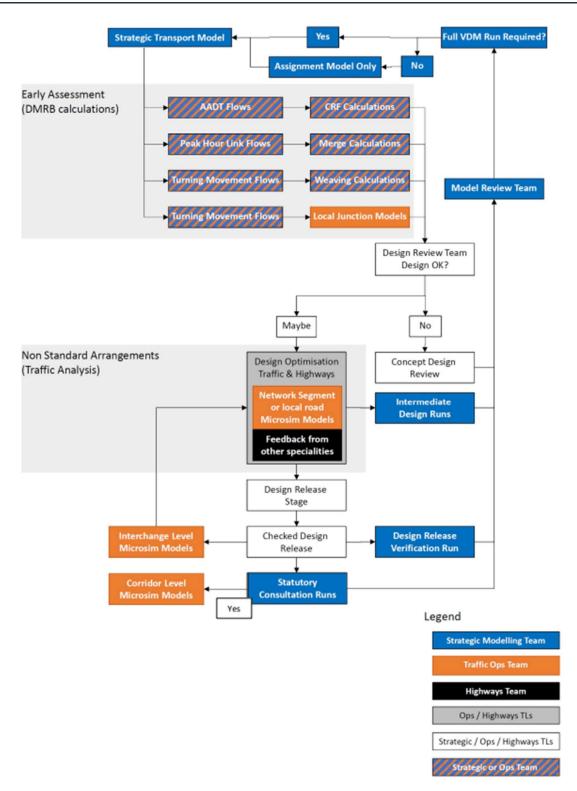
3.1.1 This chapter provides an overview of the Traffic Operational Appraisal – VISSIM Local Model Validation Report (LMVR). A new document has been uploaded to the Planning Inspectorate website <u>REP1-193</u>, further commentary on it is provided in this chapter.

3.2 Purpose

- 3.2.1 The purpose of Appendix G is to provide a summary of the traffic operational appraisal undertaken at Preliminary Design. As well as Appendix G, which details the VISSIM base local model validation report, another report '9.15 Localised Traffic Modelling Appendix H Traffic Operational Appraisal VISSIM Forecasting Report' is produced (<u>REP1-194</u>). Appendix G presents the local VISSIM model validation report for the A13 reference network from the Orsett Cock junction to the A1012, including the A13/ A1089 junction, it presents the calibration and validation of the VISSIM base model.
- 3.2.2 NH's report states that according to the Design Manual for Roads and Bridges (DMRB) Chapter 12, Section 1, Part 1, Chapter 13 Operational Appraisal, the purpose of a traffic operational technical investigation is to:
 - Ensure results from the higher tier macro-model are reasonable, especially in the early stages of the project;
 - Describe the local impact of the scheme and suggest beneficial amendments to the design; and,
 - Describe the local impact and identify areas where complementary actions will be needed by statutory and other bodies such as local authorities.

3.3 Report Summary

3.3.1 This section provides a summary of Appendix G and extracts the main points of the report.


VISSIM Application

- 3.3.2 A chapter is provided within Appendix G, which aims to define the need to use VISSIM on the Project by taking into considerations the following topics:
 - Technical best practice documentation;
 - Type of traffic analysis required using the VISSIM model;
 - The data exchange process between disciplines; and,
 - The type of outputs required.
- 3.3.3 The report presents the technical guidelines that have been used in the model:
 - Design Manual for Roads and Bridges (DMRB) 2020.
 - Traffic Modelling Guidelines, TfL, Version 3.0 (September 2010); and

- Model Auditing Process (MAP) Traffic Schemes in London Urban Network, TfL, Version 3.5 (March 2017).
- 3.3.4 The report states that "micro-simulation models do provide a mechanism to undertake analyses that cannot be realistically addressed using traditional packages", this is in reference to the strategic models associated with this area. The Project undertaken, focuses on studying:
 - Interactions between closely spaced junctions on a grade separated network and the effect of flow breakdown on network performance;
 - Signalised gyratories;
 - The impact of HGV platooning; and,
 - Technical visualisation.
- 3.3.5 The report states that "The VISSIM model was built for use:
 - during the design development, typically to assess the interaction of closely spaced junctions or signalised gyratories; and,
 - at intervals to undertake a network wide assessment of proposed design".
- 3.3.6 A section is provided detailing the data exchange process between disciplines, this is presented in Figure 3-1. The traffic operations modelling, shown in orange, was structured as a series of smaller assessments characterised by:
 - The progressive aggregation of network elements considered for the analysis. Initially, the Project network was studied road segment by road segment, then a series of nearby merges and diverges were studied as sub-networks, then the entire Project network was modelled using VISSIM; and,
 - DMRB early assessment methods were performed for isolated merge or diverge segments. For non-isolated merge or diverge segments, engineering judgment based on calculations and SATURN models were used before the development of VISSIM microsimulation model.
- 3.3.7 The report states that "the above methodology closely follows the best practice recommendations in National Highways documentation, and it enabled a high level of proactive interactions between the various disciplines employed on the design of the Project."

Figure 3-1 Lower Thames Crossing Design Process

3.3.8 A section is provided on the suitable model outputs that are to be reported on, this is based on the HCM 2010 where appropriate. NH specifically references traffic density and speed.

Software

3.3.9 The report provides a chapter on the software employed on the project, describing the purpose of random seeds. Further reference is made to the UK modelling guidelines.

3.3.10 Appendix G states that the VISSIM software version used is 11.00-11. This was the latest software release available when the model was developed, however based on Appendix B noted in Chapter 3 above, this seems to contradict the version used in the VISSIM LMVR which states that version 2020 SP13 has been used in model development.

Base Study Area

3.3.11 A chapter is provided giving an overview of the study area and the purpose of a reference network.

Traffic Data Collection

3.3.12 A chapter on the traffic data collection programme is provided, this focuses upon the survey schedule, any incidents during the survey and the types of survey undertaken. This shows that Automatic Traffic Counts (ATC), Automatic Number Plate Recognition Surveys (ANPR) and Trafficmaster travel time data was used in model development.

VISSIM Calibration Parameters

- 3.3.13 The document makes specific reference to how the parameters have been employed in the modelling:
 - Calibrate the car-following model, adjusting the way vehicles interact with other vehicles in front of them (In VISSIM, vehicles do not adjust their behaviour to vehicles behind them, except for lane change behaviour);
 - Calibrate the vehicles' speed distribution, to account for the fact that vehicles in VISSIM do not adjust their speed in reaction to vehicles situated behind them; and,
 - Test and standardise the merge/diverge network coding, to provide an accurate and consistent coding method throughout the model.
- 3.3.14 The report states that "the selection of the parameters used in the final calibrated model was the result of numerous tests and based on experience gained from the calibration of VISSIM driving behaviours for other schemes. Appropriate adjustments to the driving behaviour parameters in VISSIM, where required, were selected from the list provided in the Guidelines for Microsimulation (section 5.2.8), Highways Agency, July 2007."
- 3.3.15 Differing driver behaviour types were used in the model depending on the type of the road. This is in addition to the car following model employed and the departures from predefined model settings based on the type of road. This is primarily undertaken to improve the model's representation of driver conditions.
- 3.3.16 An overview of the model's speed distributions is summarised in addition to the linkages with national speed limits.
- 3.3.17 An explanation is provided on the network coding and driving behaviours within the model. Given the issues noted above and throughout the project on the network coding of grade separated diverges, commentary is given on the departure from the existing default lane change parameters. This departure from default parameters is also discussed for grade separated merges.
- 3.3.18 The report states that "In order to achieve an adequate level of accuracy for the Project, the operational modelling followed the recommendation of the Guidelines for the Use of Microsimulation Software and developed a calibration method.

- 3.3.19 Such a level of calibration goes beyond that which is typically undertaken for grade separated network microsimulation projects in the UK. The complexity of the proposed A13 interchange, however, required such a level of development. The following were developed:
 - A network coding structure that could be systematically applied to the future network; and,
 - Driving behaviour overwrite values for both the grade separated and the local merge segment types."
- 3.3.20 Further details are provided on the representation of merging within the models and the justification employed.

Traffic Demand Preparation

- 3.3.21 A chapter is provided giving further information on how traffic demand is loaded into the model, this includes the base VISSIM model zoning system. The traffic assignment in the base model is simple as there is only one possible path between any two zones. It is, therefore, a shortest path, 'all or nothing', assignment type.
- 3.3.22 The matrices have been developed by using the collected ANPR surveys and matrix estimation using excel. This has resulted in 15-minute matrix profiling.

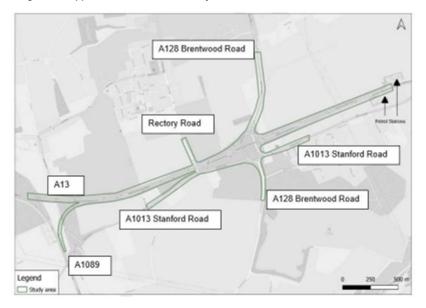
Model Validation

- 3.3.23 Validation uses the GEH statistic with the model outputs averaged over multiple seeds. Validation statistics are reported, with traffic volumes for all time periods within acceptable GEH guidelines and only one link being above 5% link flow difference.
- 3.3.24 Traffic time comparisons are based on zone to zone observed timings. The results indicate that for the AM Peak, all journey times are within recommended guidelines. The results for the PM Peak stretch over the following hours 15:00 16:00, 16:00 17:00, 17:00 18:00 and 18:00 19:00. It is not clear why there are so many PM peaks. The previous Orsett Cock Appendix B notes that the following modelling periods were created: 07:00 08:00, 08:00 09:00 and 17:00 18:00.
- 3.3.25 The report states that there are no travel time comparisons between 15:00 16:00 exceeding guidelines, however, this is not the case for the remaining peak hours, where between three and four routes are commonly found to exceed guidelines. An overview is provided on the reasoning behind the travel time conditions with an appropriate representation of queueing.
- 3.3.26 Figures are located with the Appendix showing the Trafficmaster traffic conditions in 15-minute periods.

Conclusion

3.3.27 The report provides the following conclusion, "the validation of the reference network shows that the model is fit for purpose to assess traffic conditions for complex sub-network segments. The network coding method replicated overall traffic conditions, both in free-flow conditions and in saturated circumstances in line with guidance."

3.4 Conclusion


3.4.1 This section of the chapter provides a summary of the differences and inconsistencies between Appendix B and Appendix G. In general, both documents provide a similar summary of the project. Both Appendices focus on different purposes, as such the information is suited to those needs. Ultimately, the same conclusions are reached in that the models are "fit-for-purpose", however, the methodology behind each Appendix is different.

- 3.4.2 There are three immediate and obvious areas where inconsistencies between both Appendices are noted.
 - (1) The version of VISSIM reported differs considerably.
 - (2) A further discrepancy is noted in Appendix G where the base model image is different as illustrated below, this is in comparison to the Appendix B where a smaller study area is noted.

Figure 3-2 Appendix G Base Model Study Area

Figure 3-3 Appendix B Traffic Operations Study Area

- (3) Peak hour periods are presented for four separate hours in the PM; however, the Appendix B gives the impression that only one peak hour is relevant in the PM.
- 3.4.3 It is recommended that further explanations are provided from NH on the points noted above.

4 Orsett Cock Forecast VISSIM Models and Documentation

4.1 Introduction

- 4.1.1 This chapter focusses upon the model versions supplied by NH. In September 2022, (version 1.5) of the Orsett Cock VISSIM microsimulation model was provided by NH. Subsequently a revised model was provided in July 2023 (version 2.4).
- 4.1.2 An associated forecasting report named, Lower Thames Crossing 9.15 Localised Traffic Modelling Appendix C Orsett Cock Forecasting Report, Infrastructure Planning (Examination Procedure) Rules 2010 Volume 9 was provided in July 2023 (<u>REP1 189</u>). The purpose of this NH document is to present the findings from the traffic operation assessment undertaken for Design Release 4.3 (DR4.3) of the network in the vicinity of the Orsett Cock junction including the A13/A1089 and the A1013 Stanford Road/Rectory Road junction.
- 4.1.3 A document comparison has been undertaken with the NH Orsett Cock 2030 Operational Appraisal Design Release 4.3 Operational Modelling Report (August 2022). The main revisions to include further methodology on the 2045 forecast year scenarios.
- 4.1.4 This chapter reviews the model differences between v1.5 and v2.4, it focuses on the following items:
 - Model structures
 - Modifications
 - Matrices
 - LTAM Version
 - Model Outputs
- 4.1.5 The Council has not signed off the localised forecast models for the Orsett Cock interchange and therefore the comparison provided in this section of the report is for information only and aims to assist the Council in the forecast model audit and future discussions with National Highways.

4.2 Model Structure Differences

4.2.1 The model comparison focussed on reading the .inpx files into Notepad++ with a comparison undertaken. Both .pdb files were opened in VISSIM to determine the scenarios and the associated modifications. It should be noted that no corresponding information has been provided by NH on the reasoning for these changes. The results are summarised below.

Software Version

4.2.2 Both models use VISSIM 2020.00, however the service packs differ, v1.5 uses service pack 14, whereas v2.4 uses service pack 13. This is not thought to result in a significant difference between models, however, it should be borne in mind.

Desired Speed Decisions

4.2.3 A new desired speed decision is included in v2.4, named "30mph 30/40". The addition of a new speed will have a resultant impact on the vehicle speeds throughout the section of road where the desired speed decision marker is located.

Evaluation

4.2.4 The Node Delay segment start parameter in v1.5 is set to "400" meters, whereas in v2.4 this parameter is set to "2000" meters. Changing this parameter will result in the delay segment calculation starting earlier before the node. The impact of this values being changed to a greater distance will result in a worsening case scenario being extracted from the model.

Driving Behaviour

4.2.5 The models show differences in advanced merging parameters, these are set to "false" in v1.5, whereas these are now set to "true" in v2.4. Cooperative Deceleration parameters are changed from "-3" in v1.5 to "-6" in v2.4. Additionally, the cooperative lane parameter has been amended from "false" in v1.5 to "true" in v2.4. This would suggest that it has not been employed in the previous modelling. This parameter change will impact on the driver behaviour especially at the give way and merging areas. If the links are congested, there is scope for the vehicle's performance to be improved, however, this wouldn't necessarily fix any outstanding issues. Other model parameters would require amending to make the vehicles move aggressive.

Network Performance Data Collection

4.2.6 There is a marginal change in the set-up, in v1.5, this is set to "false" whereas in v2.4 this is now set to "true". This would suggest that in v1.5 the network performance data collection was not required, however, in v2.4 the outputs being reported require the network performance data to be collected. Having this parameter set to "true" will have no impact on the model's results other than now outputting this metric.

Node Parameters

4.2.7 A number of node parameters that are used for evaluation purposes have been amended from "true" in v1.5 to "false" in v2.4. This would suggest that these are no longer required in the dynamic assignment process. The location of the nodes no longer requiring evaluation are situated on diverge points and at zone access locations. This will have no impact on the model's performance as it is only used for evaluation techniques.

4.3 Modification Analysis

4.3.1 A comparison has been undertaken into the modifications allocated in the project scenario manager. This identifies whether the same modifications are attributed to the same scenarios in v1.5 and v 2.4. This comparison noted that the same modifications are used in each version, with the exception of modification 11 being used in v1.5. Figure 4-1 illustrates the scenarios and modifications used in both versions. Further analysis was undertaken to determine any differences in the modifications, the changes are noted below.

Version 1.5			Version 2.4				
Count: 8	No	Name	Modifications	Count: 8	No	Name	Modifications
1	1	AM 2030 DM	1	1	1	AM 2030 DM	1
2	4	PM 2030 DM	5	2	4	PM 2030 DM	5
3	5	AM 2030 DS - A13W extension	2,3,6	3	5	AM 2030 DS - A13W extension	2,3,6
4	6	PM 2030 DS - A13W extension	2,4,6	4	6	PM 2030 DS - A13W extension	2,4,6
5	7	AM 2045 DM	7	5	7	AM 2045 DM	7
6	8	PM 2045 DM	8	6	8	PM 2045 DM	8
7	9	AM 2045 DS - A13W extension	2,6,9	7	9	AM 2045 DS - A13W extension	2,6,9
8	10	PM 2045 DS - A13W extension	2,6,10,11	8	10	PM 2045 DS - A13W extension	2,6,10

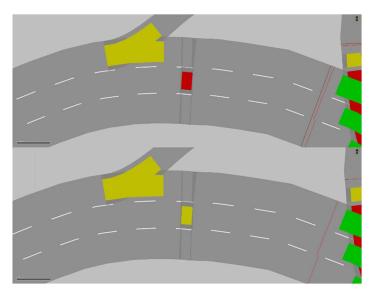
Figure 4-1 Scenario and Modifications

Modification 1 – 2030 DM AM Model

Based on a comparison of this modification, this has indicated that only matrices are different. Further analysis has been undertaken to determine where the matrices have changed. Figure 4-2, provides the range of total zone reductions and increases, this is based on summing all cell-to-cell movements, ultimately this shows the matrix changes. There are significant differences in the AM Car matrices from 08:00 to 09:00. Traffic destinating at Zone 5 (A1013 Stanford Rd (West)) are shown to increase by the largest number of trips, this is made up of traffic originating from Zones 2 (A13 (East)) and 3 (A1013 Stanford Rd (East)).

Modification 1 - 2030 DM AM Peak				
2030 AM	Total Difference Range			
2030 AM	Reduction	Increase		
2030 AM Car Warmup	-1	16		
2030 AM LGV Warmup	-9	10		
2030 AM HGV Warmup	-1	1		
2030 AM Car 0700 - 0715	-23	9		
2030 AM Car 0715 - 0730	-22	12		
2030 AM Car 0730 - 0745	-1	14		
2030 AM Car 0745 - 0800	-16	15		
2030 AM Car 0800 - 0815	0	140		
2030 AM Car 0815 - 0830	-10	145		
2030 AM Car 0830 - 0845	-10	152		
2030 AM Car 0845 - 0900	0	106		
2030 AM LGV 0700 - 0715	<mark>-1</mark>	10		
2030 AM LGV 0715 - 0730	-1	8		
2030 AM LGV 0730 - 0745	-8	7		
2030 AM LGV 0745 - 0800	-1	9		
2030 AM LGV 0800 - 0815	-2	0		
2030 AM LGV 0815 - 0830	-3	0		
2030 AM LGV 0830 - 0845	-2	0		
2030 AM LGV 0845 - 0900	-2	0		
2030 AM HGV 0700 - 0715	-1	0		
2030 AM HGV 0715 - 0730	-1	0		
2030 AM HGV 0730 - 0745	-1	4		
2030 AM HGV 0745 - 0800	0	1		
2030 AM HGV 0800 - 0815	0	1		
2030 AM HGV 0815 - 0830	-1	0		
2030 AM HGV 0830 - 0845	-1	1		
2030 AM HGV 0845 - 0900	-1	0		

Figure 4-2 2030 DM AM Peak Matrix Amendments


Modification 2 - 2030 DS AM/PM, 2045 DS AM/PM Model

- 4.3.2 There are no matrix changes in the modification between v1.5 and v2.4, however, there are differences with the networks structure. An amendment has been made to a conflict marker located on the circulatory approach to the A128 Brentwood Road signal. It is not known why a conflict marker should be located at this location due to the lane setup. In v1.5 the conflict marker was set to be as "undetermined" with both lanes set as red, meaning that no vehicles would be able to use the lanes. In v2.4, this has been amended to passive, meaning that the conflict marker is not active. This could provide a marginal area where additional capacity is given to the network as illustrated in Figure 4-3.
- 4.3.3 Further amendments are noted with respect to desired speed decisions numbered (49/50/51/52/56/57/58/59/60/61/62/97/99/99/100/101/102/103/105/106/107/109/112/113/114/ 115/118/119/120/121). Some of the desired speed decisions relate to a change of position on the links, other relate to a change in speed. Where speed changes are noted, an initial review sees the desired speed changing from 50mph in v1.5 to 30mph in v2.4. An example being the

LTC northbound off ramp to A13 westbound. The changes will have an impact on vehicle interaction.

- 4.3.4 Lane change parameters have been amended on link 910679, this is a single lane section of the LTC southbound off ramp to the A13 Eastbound. V1.5 provides a lane change distance of 1,500m, whereas v2.4 notes 800m. This means that vehicles will start changing to be in the correct lane much closer to this particular link. Link 10032 which is the exit from the Orsett Cock roundabout to the A1013 Stanford Road has its lane change distance reduced from 200m in v1.5 to 100m in v2.4. A similar reduction is noted on the exit from the roundabout to A128 Brentwood Road South, where in v1.5, 150m was used, however in v2.4, 100m is used.
- 4.3.5 Ultimately, these changes will have an impact on vehicle interaction and their desire to be in the correct lane.
- 4.3.6 The driving behaviour of the link type slip road has been amended from having a standstill distance CC0 in v1.5 of 6 meters to 3 meters in v2.4. Additionally, the maximum deceleration for cooperative braking has been revised from -3.00 m/s² in v1.5 to -6.00m/s². The advanced merge is also selected from this link type in v2.4, whereas in v1.5, this wasn't selected. If this option is selected, more vehicles can change lanes earlier. Thus, the capacity increases and the probability, that vehicles come to a stop to wait for a gap, is reduced.

Modification 3 – 2030 DS AM Model

4.3.7 The comparison has indicated that only matrices are different. Further analysis has been undertaken to determine where the matrices have changed. As illustrated in Figure 4-4, the range of total zone reductions and increases, this is based on summing all cell-to-cell movements, ultimately this shows the matrix changes. There are significant differences in the AM Car, LGV and HGV warmup matrices of a maximum changes of 165, 84 and 210 respectively. There are still subsequent changes in the 15-minute car matrices, which a roughly show maximum increases by 20. It is worth noting that, the AM Car 08:30 – 08:45 matrix has a total reduction of 57 vehicles, entering the model at Zone 3 (A1013 Stanford Rd (East)) with the principal movement to Zone 5 (A1013 Stanford Rd (West)) decreasing by 53 vehicles.

Modification 3 - 2030 DS AM Peak				
2030 AM	Total Differe	ence Range		
2030 AW	Reduction	Increase		
2030 AM Car Warmup	-5	165		
2030 AM LGV Warmup	-4	84		
2030 AM HGV Warmup	-2	210		
2030 AM Car 0700 - 0715	-2	18		
2030 AM Car 0715 - 0730	-3	22		
2030 AM Car 0730 - 0745	-5	20		
2030 AM Car 0745 - 0800	-3	23		
2030 AM Car 0800 - 0815	-3	22		
2030 AM Car 0815 - 0830	-3	20		
2030 AM Car 0830 - 0845	-57	20		
2030 AM Car 0845 - 0900	-1	17		
2030 AM LGV 0700 - 0715	-2	1		
2030 AM LGV 0715 - 0730	-2	0		
2030 AM LGV 0730 - 0745	-2	0		
2030 AM LGV 0745 - 0800	-2	0		
2030 AM LGV 0800 - 0815	-2	1		
2030 AM LGV 0815 - 0830	-1	0		
2030 AM LGV 0830 - 0845	-1	0		
2030 AM LGV 0845 - 0900	-1	1		
2030 AM HGV 0700 - 0715	-1	0		
2030 AM HGV 0715 - 0730	-1	0		
2030 AM HGV 0730 - 0745	-1	0		
2030 AM HGV 0745 - 0800	-2	1		
2030 AM HGV 0800 - 0815	-1	1		
2030 AM HGV 0815 - 0830	-1	1		
2030 AM HGV 0830 - 0845	-1	1		
2030 AM HGV 0845 - 0900	-1	0		

Figure 4-4 2030 DS AM Peak Matrix Amendments

Modification 4 – 2030 DS PM Model

4.3.8 The comparison has indicated that only matrices are different. Analysis has been undertaken which highlights substantial changes in the PM LGV warmup matrix, whereby traffic reduces by 759. V1.5 of the model had 208 vehicles routing from Zone 12 (LTC North) to Zone 2 (A13 (East)), whereas v2.4 only has 55 vehicles. Another large reduction is noted from Zone 12 (LTC North) to Zone 9 (LTC South), v1.5 had 745 vehicles whereas this is reduced to 198 vehicles. A summary of the total reductions and increased is presented in Figure 4-5.

Modification 4 - 2030 DS PM Peak				
2030 PM	Total Difference Range			
2030 FW	Reduction	Increase		
2030 PM Car Warmup	0	162		
2030 PM LGV Warmup	-2	70		
2030 PM HGV Warmup	-759	0		
2030 PM Car 1700 - 1715	-1	13		
2030 PM Car 1715 - 1730	0	12		
2030 PM Car 1730 - 1745	0	12		
2030 PM Car 1745 - 1800	-2	13		
2030 PM LGV 1700 - 1715	0	0		
2030 PM LGV 1715 - 1730	-1	0		
2030 PM LGV 1730 - 1745	0	0		
2030 PM LGV 1745 - 1800	-1	0		
2030 PM HGV 1700 - 1715	-1	1		
2030 PM HGV 1715 - 1730	-1	0		
2030 PM HGV 1730 - 1745	0	0		
2030 PM HGV 1745 - 1800	-1	1		

Figure 4-5 2030 DS PM Peak Matrix Amendments

Modification 5 – 2030 DM PM Model

4.3.9 Modification 5 shows minor flow modifications across the modelled time periods. The majority of the increases are noted coming from A1013 Stanford Road East to A128 Brentwood Road North, a summary of the individual cell-to-cell movements is presented in Figure 4-6.

Modification 5 - 2	030 DM PM F	Peak
2030 PM	Total Difference Range	
20301 1	Reduction	Increase
2030 PM Car Warmup	-2	22
2030 PM LGV Warmup	-1	7
2030 PM HGV Warmup	-1	1
2030 PM Car 1700 - 1715	0	26
2030 PM Car 1715 - 1730	-4	14
2030 PM Car 1730 - 1745	-1	12
2030 PM Car 1745 - 1800	0	12
2030 PM LGV 1700 - 1715	0	1
2030 PM LGV 1715 - 1730	-1	1
2030 PM LGV 1730 - 1745	0	0
2030 PM LGV 1745 - 1800	-1	1
2030 PM HGV 1700 - 1715	0	1
2030 PM HGV 1715 - 1730	-1	0
2030 PM HGV 1730 - 1745	-1	0
2030 PM HGV 1745 - 1800	0	0

Figure 4-6 2030 DM PM Peak Matrix Amendments

Modification 6 – 2030/2045 DS AM/PM Model

4.3.10 The comparison has identified that lane change parameters differ on one specific link between the two model versions. Link number 10086 has a lane change parameter of "800"m in v1.5, however, this is set to "1000"m in v2.4. This link in located on the A13 Eastbound off ramp approaching Orsett Cock roundabout. Having a change of this magnitude will have an impact on the vehicles arriving at the roundabout. Vehicles in v2.4 will be aware that they have a larger distance available to them to be in the correct lane at the roundabout. There are no changes to modelled flow associated with this modification.

Modification 7 – 2045 DM AM Model

- 4.3.11 The comparison has identified that data collection modifications have been amended, previously in v1.5, this was set to false, however, in v2.4, this is no longer selected. This setting suggests that when outputting model outputs for v2.4, data collection was not selected.
- 4.3.12 Further analysis indicates significant changes to vehicle matrices as illustrated in Figure 4-7. There is a large fluctuation in the HGV flows, the largest decrease noted between the A13 East to A13 West, this compares to an increase noted in the reverse direction from the A13 West to the A13 East. Overall, there is no pattern of the same zone to zone movements being responsible for the increase or decrease in volumes.

Modification 7 - 2045 DM AM Peak				
2045 AM	Total Different	ence Range		
2045 AM	Reduction	Increase		
2045 AM Car Warmup	-1	78		
2045 AM LGV Warmup	-7	10		
2045 AM HGV Warmup	-168	224		
2045 AM Car 0700 - 0715	-1	80		
2045 AM Car 0715 - 0730	-46	15		
2045 AM Car 0730 - 0745	0	45		
2045 AM Car 0745 - 0800	-1	69		
2045 AM Car 0800 - 0815	0	49		
2045 AM Car 0815 - 0830	-4	93		
2045 AM Car 0830 - 0845	-4	57		
2045 AM Car 0845 - 0900	-56	53		
2045 AM LGV 0700 - 0715	-1	10		
2045 AM LGV 0715 - 0730	0	8		
2045 AM LGV 0730 - 0745	-7	1		
2045 AM LGV 0745 - 0800	0	9		
2045 AM LGV 0800 - 0815	0	9		
2045 AM LGV 0815 - 0830	0	9		
2045 AM LGV 0830 - 0845	0	0		
2045 AM LGV 0845 - 0900	0	0		
2045 AM HGV 0700 - 0715	-65	0		
2045 AM HGV 0715 - 0730	0	79		
2045 AM HGV 0730 - 0745	0	109		
2045 AM HGV 0745 - 0800	0	0		
2045 AM HGV 0800 - 0815	0	5		
2045 AM HGV 0815 - 0830	-84	105		
2045 AM HGV 0830 - 0845	0	89		
2045 AM HGV 0845 - 0900	- <mark>86</mark>	0		

Figure 4-7 2045 DM AM Peak Matrix Amendments

Modification 8 – 2045 DM PM Model

4.3.13 The comparison generally shows marginal changes in traffic volumes, however, there are instances of increase above 50 vehicles being added to the matrices as illustrated in Figure 4-8.

Modification 8 - 2045 DM PM Peak				
2045 PM	Total Difference Range			
2043110	Reduction	Increase		
2045 PM Car Warmup	-2	2		
2045 PM LGV Warmup	-1	1		
2045 PM HGV Warmup	0	5		
2045 PM Car 1700 - 1715	-1	53		
2045 PM Car 1715 - 1730	0	0		
2045 PM Car 1730 - 1745	0	0		
2045 PM Car 1745 - 1800	-1	56		
2045 PM LGV 1700 - 1715	-16	0		
2045 PM LGV 1715 - 1730	0	1		
2045 PM LGV 1730 - 1745	0	0		
2045 PM LGV 1745 - 1800	-16	1		
2045 PM HGV 1700 - 1715	0	0		
2045 PM HGV 1715 - 1730	0	0		
2045 PM HGV 1730 - 1745	0	0		
2045 PM HGV 1745 - 1800	0	0		

Figure 4-8 2045 DM PM Peak Matrix Amendments

Modification 9 – 2045 DS AM Model

- 4.3.14 The comparison has identified that data collection modifications have been amended, previously in v1.5, this was set to false, however, in v2.4, this is no longer selected. This setting suggests that when outputting model outputs for v2.4, data collection was not selected.
- 4.3.15 It should be noted that in both v1.5 and v2.4 of the model, the matrices are incorrectly named. As illustrated in Figure 4-9, the matrices are named 2030, whereas they should be named 2045. It is assumed that this is just a naming issue and that the correct matrices are used in both model versions. The comparison shows marginal changes associated with the majority of 15-minute matrices, however, there are substantial increases relating to the warmup periods of all user classes. Traffic originating from the LTC North is shown to increase to destinate at the A128 Brentwood Road and LTC South.

Modification 9 - 2045 DS AM Peak				
2045 AM	Total Differe	ence Range		
2045 AIVI	Reduction	Increase		
2030 AM Car Warmup	0	199		
2030 AM LGV Warmup	-1	101		
2030 AM HGV Warmup	0	207		
2030 AM Car 0700 - 0715	-1	1		
2030 AM Car 0715 - 0730	-2	1		
2030 AM Car 0730 - 0745	-2	1		
2030 AM Car 0745 - 0800	-2	2		
2030 AM Car 0800 - 0815	-1	2		
2030 AM Car 0815 - 0830	0	2		
2030 AM Car 0830 - 0845	-1	2		
2030 AM Car 0845 - 0900	-1	1		
2030 AM LGV 0700 - 0715	0	1		
2030 AM LGV 0715 - 0730	-1	0		
2030 AM LGV 0730 - 0745	0	2		
2030 AM LGV 0745 - 0800	-1	1		
2030 AM LGV 0800 - 0815	0	9		
2030 AM LGV 0815 - 0830	0	1		
2030 AM LGV 0830 - 0845	0	0		
2030 AM LGV 0845 - 0900	-1	1		
2030 AM HGV 0700 - 0715	0	1		
2030 AM HGV 0715 - 0730	-1	1		
2030 AM HGV 0730 - 0745		2		
2030 AM HGV 0745 - 0800		1		
2030 AM HGV 0800 - 0815		2		
2030 AM HGV 0815 - 0830	-1	1		
2030 AM HGV 0830 - 0845	0	0		
2030 AM HGV 0845 - 0900	0	0		

Figure 4-9 2045 DS AM Peak Matrix Amendments

Modification 10 - 2045 DS PM Model

- 4.3.16 Modification 10 notes that large changes are noted in the warmup periods. Increases are noted in the car and LGV matrices, whereas the HGV matrix reduces by 751. The increases are mainly by traffic originating from the LTC North.
- 4.3.17 It should be noted that in both v1.5 and v2.4 of the model, the matrices are incorrectly named. As illustrated in Figure 4-10, the matrices are named 2030, whereas they should be named 2045. It is assumed that this is just a naming issue and that the correct matrices are used in both model versions.

Modification 10 - 2045 DS PM Peak				
2045 PM	Total Difference Range			
2045 111	Reduction	Increase		
2030 PM Car Warmup	-1	165		
2030 PM LGV Warmup	0	84		
2030 PM HGV Warmup	-751	0		
2030 PM Car 1700 - 1715	-2	1		
2030 PM Car 1715 - 1730	-2	1		
2030 PM Car 1730 - 1745	-1	1		
2030 PM Car 1745 - 1800	-2	0		
2030 PM LGV 1700 - 1715	-1	4		
2030 PM LGV 1715 - 1730	0	3		
2030 PM LGV 1730 - 1745	0	2		
2030 PM LGV 1745 - 1800	0	3		
2030 PM HGV 1700 - 1715	0	0		
2030 PM HGV 1715 - 1730	0	0		
2030 PM HGV 1730 - 1745	-1	1		
2030 PM HGV 1745 - 1800	0	0		

Figure 4-10 2045 DS PM Peak Matrix Amendments

4.4 Modification summary

4.4.1 As noted above there are numerous instances of matrices being different from the v1.5 model. It is understood that the combined network link and merge parameters associated with Do Something amendments have been undertaken to enhance the vehicle performance and result in more realistic driving conditions. As expected, all the modifications will have an impact on and lead to revised model outputs, however, the conclusions ultimately provide a similar picture. It should be noted that Stantec have not observed the models running and as such the comments on the modifications are based on interpretation of the files provided.

4.5 Versions of LTAM

- 4.5.1 The Forecasting Report associated with version 2.4 of the model states that "The 2030 and 2045 DM forecast traffic demand in VISSIM was determined by examining the differences in forecast traffic flows (for model zones) predicted by the 2016 base year and 2030/2045 DM Lower Thames Area Model (LTAM) the Project's transport model (CM49) models for the available hours of 07:00 08:00 in the AM peak and 17:00 18:00 in the PM peak."
- 4.5.2 Additional "The 2030 and 2045 DS forecast traffic demand matrices in VISSIM were determined using the same method as the 2030 and 2045 DM, that is by examining the differences in forecast traffic flows from the LTAM for the 2016 base year and 2030/2045 DS (CS72)."
- 4.5.3 This is in contrast to version 1.5, where "The 2030 DM forecast traffic demand in VISSIM was determined by examining the differences in forecast traffic flows (for model zones) predicted by the 2016 Base Year and 2030 DM LTAM (CM45) models for the available hours of 07:00 08:00 in the AM Peak and 17:00 18:00 in the PM Peak." Furthermore, "The 2030 DS forecast traffic demand matrices in VISSIM were determined using the same method as the 2030 DM, that is by examining the differences in forecast traffic flows predicted by the 2016 Base Year and 2030 DS (CS67) LTAM models."
- 4.5.4 The different sources of LTAM result in different matrices being used in the models, this explains the modifications.

4.6 Model Outputs

4.6.1 Appendix C presents model outputs, which relate to traffic flows and journey times. These have not been reviewed as Thurrock has not signed off the forecast Orsett Cock VISSIM

model. The model outputs will be agreed once a version of the model is agreed that can be used as a suitable basis for forecasting.

4.7 Summary

- 4.7.1 A document comparison has been undertaken of the Localised Traffic Modelling Appendix C Orsett Cock Forecasting Report (<u>REP1-189</u>) with the NH Orsett Cock 2030 Operational Appraisal Design Release 4.3 Operational Modelling Report (August 2022). In addition, the chapter has presented result of the review of the model differences between v1.5 and v2.4. Multiple changes have been identified both in terms of the network parameters and travel demand.
- 4.7.2 At the meeting on 16/08/23 National Highways clarified that the changes are mainly due to an update to the LTAM (i.e. for the Do-Minimum microsimulation matrices, version CM45 was used originally and CM49 has been used more recently; and for the Do-Something matrices CS67 was used originally and CS72 has been used more recently). The Council has asked to see the extent and the magnitude of the changes within the LTAM by providing flow difference figures in the first instance. An explanation of the network changes implemented between v1.5 and v2.4 is also required.
- 4.7.3 The Council has not signed off the localised forecast models for the Orsett Cock interchange and therefore the comparison provided in this chapter of the report is for information only and aims to assist the Council in the forecast model audit and future discussions with National Highways.

5 Appendix H

- 5.1.1 Stantec have been provided by NH with the Lower Thames Crossing 9.15 Localised Traffic Modelling Appendix H Traffic Operational Appraisal VISSIM Forecasting report July 2023 (REP1 194).
- 5.1.2 The purpose of Appendix H is to present the traffic operation appraisal report of the Lower Thames Crossing by using operational analysis to describe the traffic conditions of the project's proposed highway layout using DMRB merge and diverge segment analysis as well as the assessment using the traffic microsimulation model of the project. The document states that "The traffic operational appraisal has been undertaken for 2045 to remain consistent with the design year ". Chapter 1 of Appendix H provides an overview of the project illustrating its route and the subsequent connectivity.
- 5.1.3 Chapter 2 of Appendix H references the previously mentioned Appendix G, commenting on the data exchange processes between different disciplines. Further discussion is provided on the application of DMRB merge and diverge calculations. The use of VISSIM to undertake detailed modelling is provided including the source of the traffic demand "The VISSIM model traffic demand come from the 2045 LTAM (version CS72)."
- 5.1.4 Chapter 3 focuses on the key assignment principles, as stated "a. To ensure free-flowing traffic conditions at the design year (2045); b. To ensure safe traffic conditions: i. With an easily understandable road network for the driver; and, ii. With the avoidance of blocking back queues from the local road network. c. To account for known blocking back queue events." Further information in provided on traffic investigations during the design development, this sets out the Key Traffic Appraisal Assessments undertaken.
- 5.1.5 Grade separated network traffic analysis is provided in Chapter 4, this sets out the criteria and notes the 2045 traffic conditions on the project. Speed profiles graphs illustrate how the Lower Thames Crossing's speed will vary based on the VISSIM model outputs. Traffic conditions of the A2/M2, the A13 and the M25 corridor are also reported on, note that no source is provided, so it is assumed that the data comes from LTAM. In both cases, speed plots are provided. The document concludes that "In conclusion, the Lower Thames Crossing corridor is forecast to be freeflowing with stable traffic conditions. The M25, A13 and A2/M2 are also forecast to be generally free-flowing, with some merge and diverge segments experiencing capacity issues."
- 5.1.6 Chapter 5 focuses on local road traffic analysis, the document states that "To assess the design year traffic conditions, it was therefore decided to use the 2045 traffic volumes directly from SATURN. The assessment has been performed using VISSIM for consistency". Junction performance guidance is laid out which aligns with "current industry best practice". This relates to the volume, number of lanes, volume/capacity calculations, delay, average queue length and maximum queue length for each approach at the following junctions:
 - M25 Junction 29,
 - A2 Gravesend East Interchange,
 - Henhurst Road,
 - Collector Road Junction,
 - Thong Lane New Junction,
 - Thong Lane to Brewers Lane,
 - Brewers Road Junction.

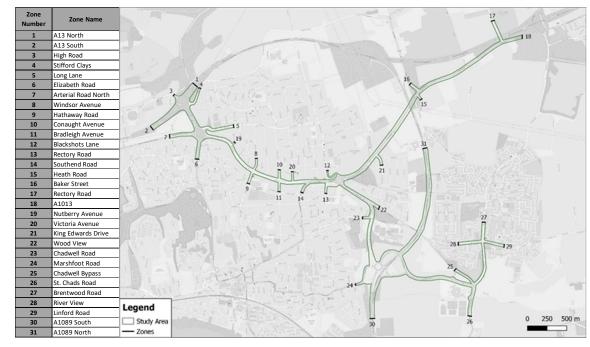
- 5.1.7 The document concludes in Chapter 6 with the following statement: "In conclusion, extensive traffic operation analyses were developed throughout the design development process. The design progressed logically, starting with key weaving segments, followed by interchanges and then local roads.
- 5.1.8 2045 mainline forecasted traffic conditions are: a. Project mainline free-flowing; b. M25 mainline free-flowing, with localised merges experiencing capacity issues; c. A13 mainline free-flowing, with localised segments at experiencing capacity issues; and, d. A2 mainline free-flowing, with localised segments experiencing capacity issues.
- 5.1.9 Junctions on the local road network are also free-flowing, but the Brewer's Road junction will require further signal timing optimisation as part of detailed design."

5.2 Appendix H Summary

- 5.2.1 In summary Appendix H focuses on more of the strategic aspects of the project, the name of the document is slightly misleading as there is limited connection to the VISSIM models.
- 5.2.2 The results of the assessment presented by NH in Appendix H will need to be updated once the Orsett Cock forecast model is signed off by the Council.

Thurrock Council Comments on Applicant's Submissions at Deadline 1 and 2 (D1 & D2) – Lower Thames Crossing TRO10032-003072-915 Localised Traffic Modelling – Summary Review – Appendix E

Lower Thames Crossing


Annex 4 Review of Base Year East-West Base Model

Job Name:	East West Microsimulation Modelling
Job No:	332510911
Note No:	TN003
Date:	August 2023
Prepared By:	Sid lyer
Subject:	East-West Base Version 3 Microsimulation Model – Review

1. Introduction

- 1.1. In support of ongoing work with Thurrock (the Council) regarding the Lower Thames Crossing DCO, the applicant has agreed to undertake a microsimulation modelling exercise to better understand any traffic operational impacts of the LTC within the area of the East-West model incorporating the network from the A13/A1012 junction, Lodge Lane through Daneholes Roundabout incorporating Marshfoot Road and junction to the roundabout of the B149/St. Chads Road.
- 1.2. As part of this process the applicant has been sharing the base models for review with the Council.
- 1.3. The East-West microsimulation model and associated LMVR were initially issued on the 27th June 2022. A revised Base Model Issue 2 was received in September 2022 which the Council has reviewed and provided a response to the applicant in the form of Technical Note 002 issued to the applicant on 9th November 2023. Subsequently, Base Model Issue 3 has been submitted by the applicant in July 2023 at Deadline 1. This model has been reviewed and the findings of this review are included in this technical note.

1.4. As illustrated within the LMVR the modelled area and zones are illustrated within Figure 1.

Figure 1: East - West Microsimulation Model Zoning System

Technical Note 003 Thurrock VISSIM Review - East-West Base Model Issue 3.docx

2. Overview

- 2.1. This technical note provides an updated Red/Amber/Green (RAG) review of the base East-West microsimulation model and identifies elements within the model that require review and an update. The Council will also be reviewing the LMVR and will provide comments separately.
- 2.2. A summary of the RAG review categorisation along with a brief description is provided below in Table 1:

RAG Category	Description
Comments	Findings noted as part of the model audit process that may require consideration and amendment however not deemed to have a material impact on the overall operation or outputs derived from the model.
Recommendations /Additional Information required	These observations constitute of suggested recommendations as part of the model audit process and request for supporting evidence made by the reviewer to provide assurance that best modelling practice has been adhered to and therefore the modelling outputs are reliable.
Critical Issues	Issues in the model that require corrective action as these are deemed to have an impact on the operation of the model and associated outputs.

Table 1: RAG Review Categorisation

- 2.3. A full review of the model outputs and LMVR will be completed once outstanding issues highlighted in this technical note have been sufficiently addressed.
- 2.4. Table 2 provides details on key elements within the model that have been identified to remain a concern and should be addressed. A model can be signed off by the Council when all the issues classed as Red or Amber are addressed.

3. Base Model Version 3 Observations

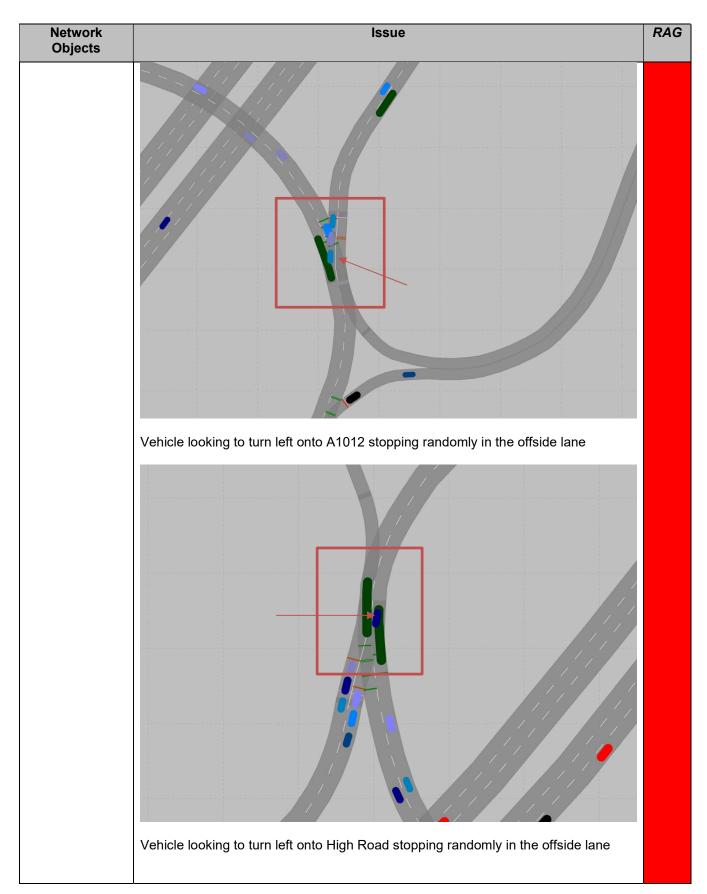
3.1. A further review of the version 3 Base Model has been undertaken and has identified the following elements that still require further investigation.

Network Objects	Issue	RAG
Modelled Time Period	Upon review of Base Model Issue 2, it had been identified in TN002, issued in November 2022, that the time period within the microsimulation AM model started at 07:30, however, the LMVR referenced the peak period for the AM peak as between 07:00 to 09:00 including warm up and cool down. This has been amended in Base Model Issue 3 with model simulation period set from 06:30 to 09:30 including warm up and cool down period. No amendments are required to PM peak modelled time period from previous submission.	
Vehicle Composition	The vehicle composition for HGV is made of a single vehicle type and model – Vehicle type 300 and Vehicle Model 20 (length 10.22 to 15.96m). Traffic flow diagrams have been provided within Appendix A of the LMVR however it is unclear	

Table 2: East-West Microsimulation Model RAG Review

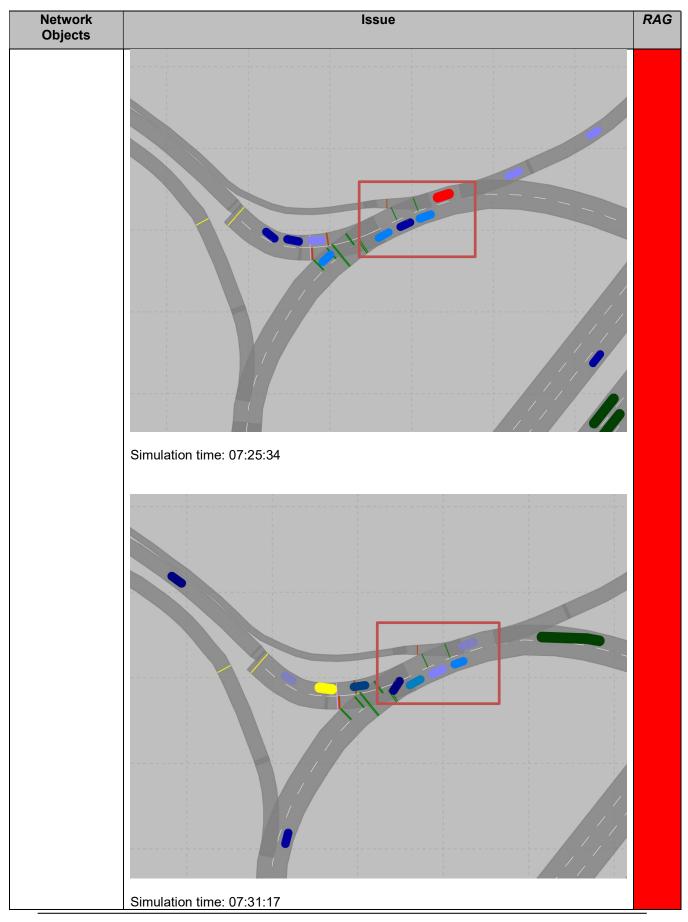
Technical Note 003_Thurrock VISSIM Review - East-West Base Model Issue 3.docx

Network Objects	Issue	RAG
	if survey data classified heavy vehicles into two separate vehicle types, OGV1 and OGV2. A higher proportion of OGV2 type vehicles could have an impact on speeds and journey times within the model network. It is good practice to estimate average vehicle proportions from survey data for model input.	
Desired Speed distributions	Speed distributions included in the model are generally considered acceptable however the LMVR does not refer to the source of this information i.e. whether this was derived using observed data (ATCs) or obtained from other sources.	
Signal Timings	Unusual signal change occurring in the PM peak model at SC 1013 for signal phase F at the start of the simulation period. Whilst this may not impact the overall results, this is highlighted in the error log at the end of the simulation run and as such should be reviewed.	
Reduced Speed Areas	Reduced speed areas have been coded in the model using various speed distributions included within the model. Whilst the reduced speed areas used within the model extent are generally considered acceptable, additional commentary is required in the LMVR to elaborate on the speeds using at following locations:	
	1) Signalised pedestrian crossing to the west of Daneholes roundabout uses two different speed distributions for reduced speed areas in the EB and WB directions respectively. The speed distribution used for the WB approach at the pedestrian signals is slightly slower than the EB approach. The lower speed distribution results in vehicles slowing down unnecessarily when the traffic phase for WB vehicles is green and flow is not impeded by an upstream queue.	
	2) A review of the reduced speed areas input for Daneholes Roundabout and A13/A1012 gyratory suggests the speed through the circulatory carriageway at Daneholes Roundabout is higher than the A13/A1012 gyratory. This is unlikely and therefore modelled input should be reviewed or further evidence should be provided to confirm the input.	

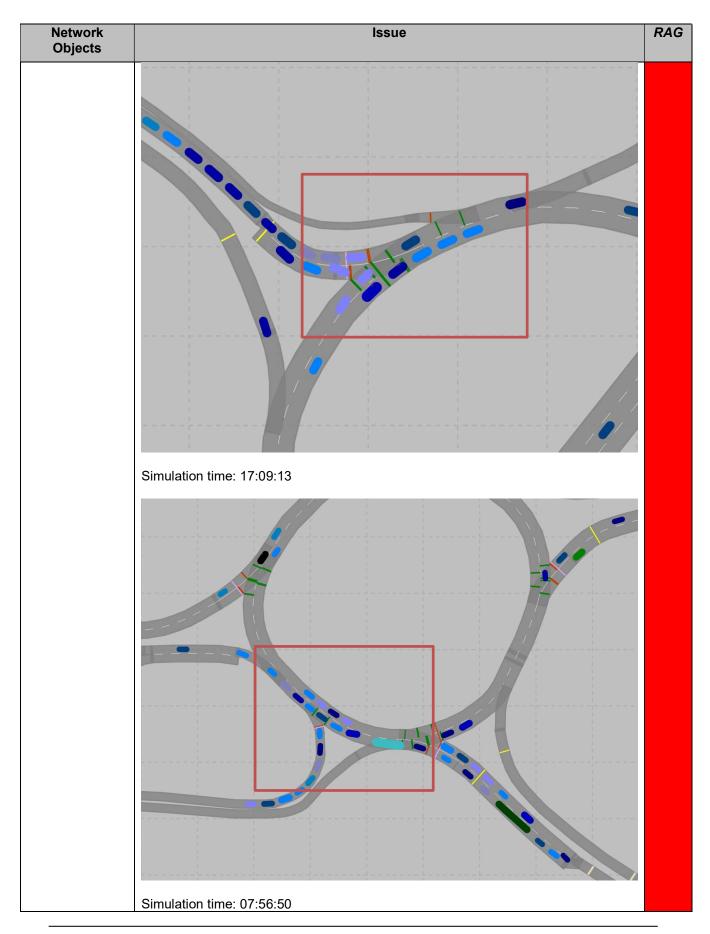

Technical Note 003_Thurrock VISSIM Review - East-West Base Model Issue 3.docx

Network Objects	Issue	RAG
	3) Although not fully coded which is okay, Reduced Speed Areas should be coded on Marshfoot Road to accurately represent slower moving traffic going ahead at the roundabout.	
	2020 DigitalGlobe 2020 Microsoft Corporation CNE 5 (2020) Distribution Airbus DS	
Network Coding	Lane change parameters for connectors 41160 and 41175 need reviewing, in particular the emergency stop position. Vehicles on static routes looking to exit the A13 slips and join High Road and A1012 respectively randomly stop in the offside lane past the roundabout approach and are removed from the simulation after 60 seconds. This also results in overlapping of vehicles on the circulatory section which needs amending.	

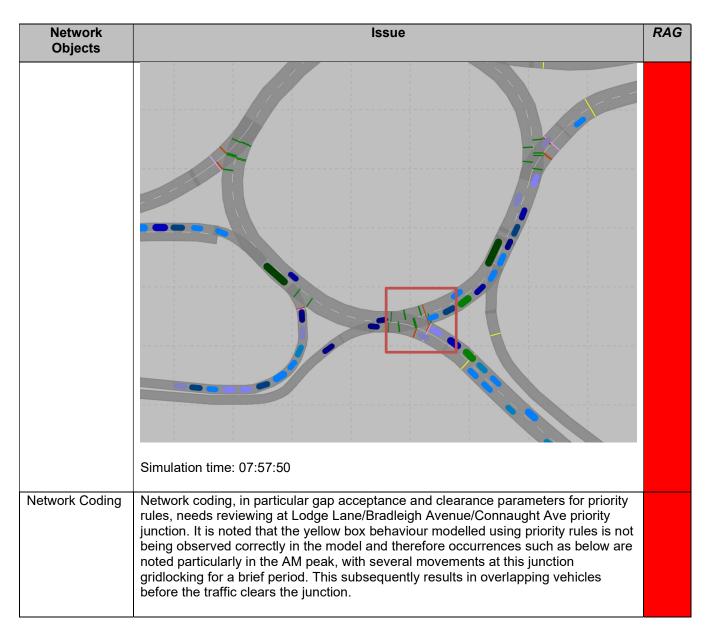
Technical Note 003_Thurrock VISSIM Review - East-West Base Model Issue 3.docx


Technical Note 003_Thurrock VISSIM Review - East-West Base Model Issue 3.docx

Network Objects	Issue	RAG
Network Coding	Lane change parameters for connectors 41184 need reviewing, in particular the emergency stop position. A review of the error log suggests vehicles on static routes looking to exit the A13 randomly stop after travelling past the point where they lane change should occur and are subsequently removed from the simulation after 60 seconds.	
Network Coding	Network coding for circulatory section at A13/A1012 gyratory and Daneholes Roundabout should be reviewed to ensure vehicles exiting the roundabout change lanes well in advance. It is noted that vehicles approach the exit to the roundabout in the offside lane and abruptly stop in the offside lane to seek a gap. This creates a queue of several stand still vehicles in the offside lane of the circulatory carriageway and is affecting the movement of vehicles from High Road. This could also be the reason for a queue and potentially latent demand on the High Road approach in the PM peak.	

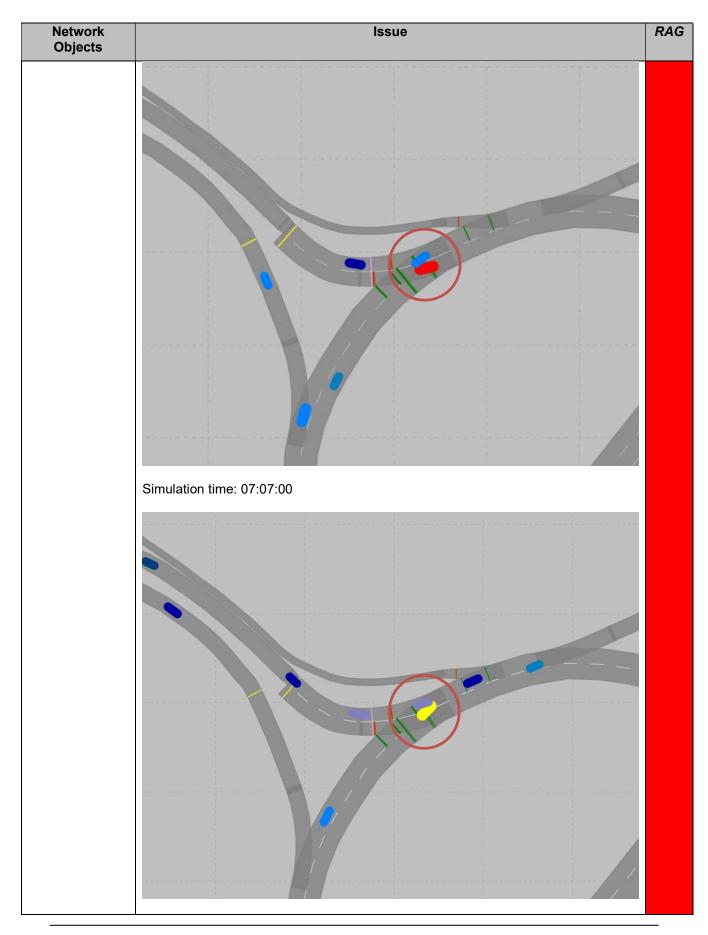

Technical Note 003_Thurrock VISSIM Review - East-West Base Model Issue 3.docx

Technical Note 003_Thurrock VISSIM Review - East-West Base Model Issue 3.docx


Technical Note 003_Thurrock VISSIM Review - East-West Base Model Issue 3.docx

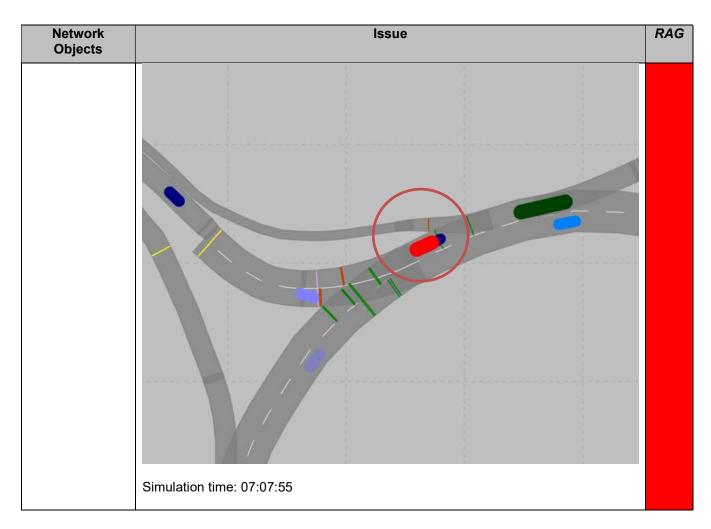
Network Objects	Issue	RAG
Network Coding	Lane change parameters, in particular emergency stop position for connector 40721 needs reviewing as vehicle turning left from Southern Road approaches the junction in the offside lane, is unable to change lanes and subsequently removed from the network. This issue could be exaggerated in the forecast scenarios and could also impact the right turn movement from Southern Road and should therefore be addressed in the Base Model.	
	Link: 40693	
	Simulation time: 08:41:20	
Network Coding	Priority rule on southern circulatory section at Daneholes roundabout needs reviewing. Vehicles on the circulatory are stopping to give way to the approaching traffic which is incorrect unless observed on site. This results in queueing of traffic on circulatory carriageway. Please provide supporting evidence if this has been observed on site.	

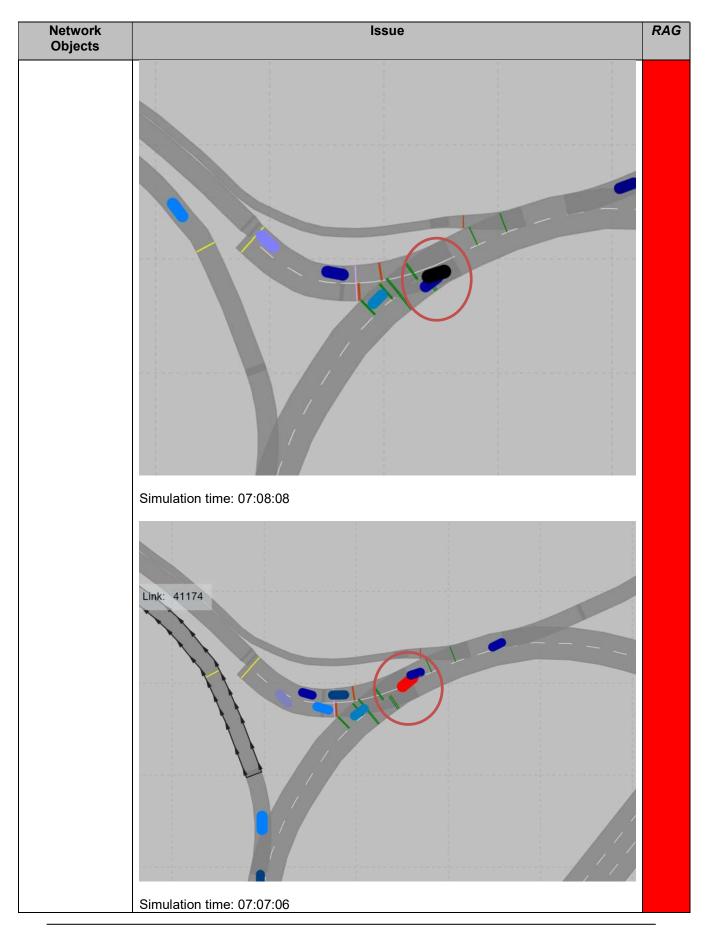
Technical Note 003_Thurrock VISSIM Review - East-West Base Model Issue 3.docx

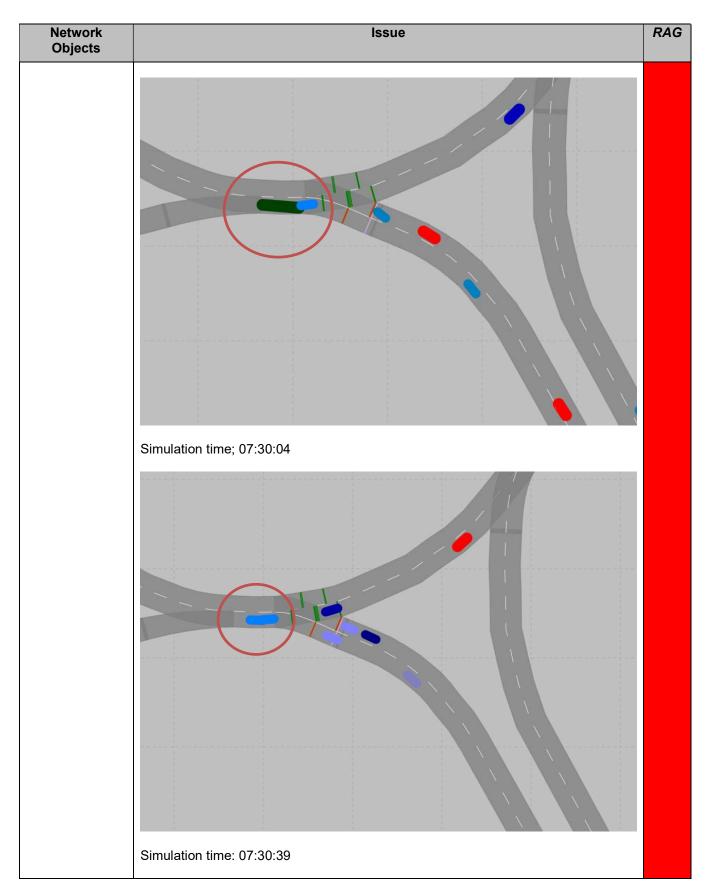


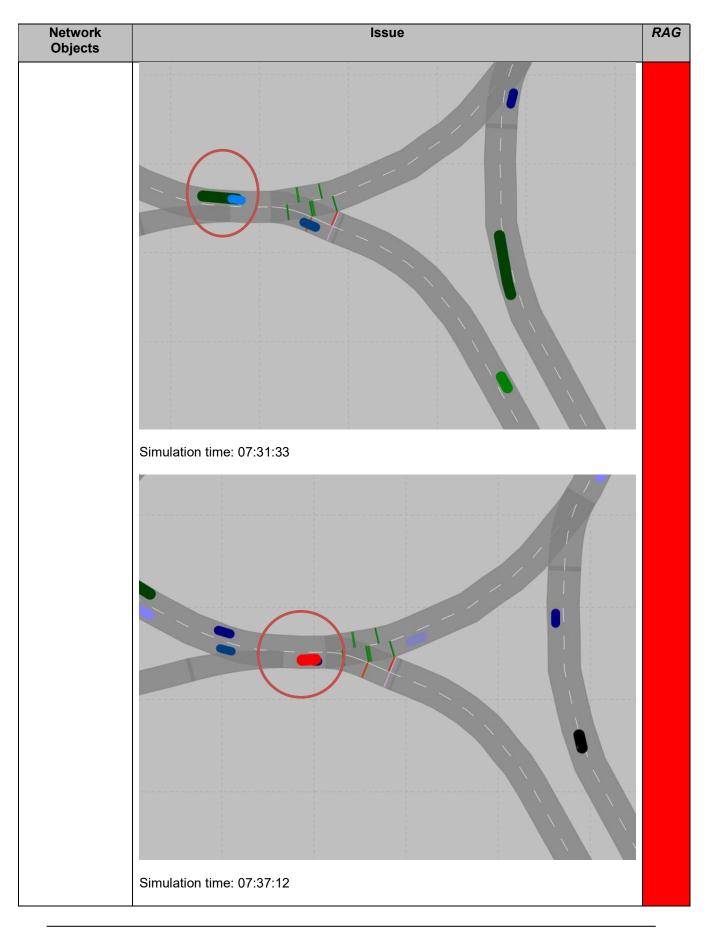
Network Objects	Issue	RAG
Overlapping Vehicles	 Through the model review, it is identified that there are still locations where significant overlapping vehicles occur. This is specifically identified at A13/A1012 gyratory and Daneholes roundabout which is a result of queuing back into the roundabout due to the pedestrian crossing on the A1013 arm of the junction. The Daneholes roundabout junction is a key location for the Council and as such the Priority Rules should be reviewed and amended. <u>Overlapping Vehicles at A13/A1012 gyratory</u> 	

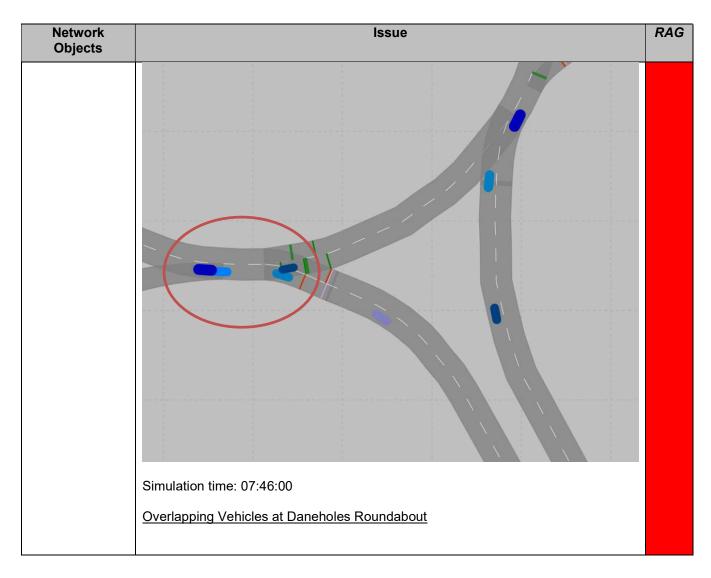

Technical Note 003_Thurrock VISSIM Review - East-West Base Model Issue 3.docx

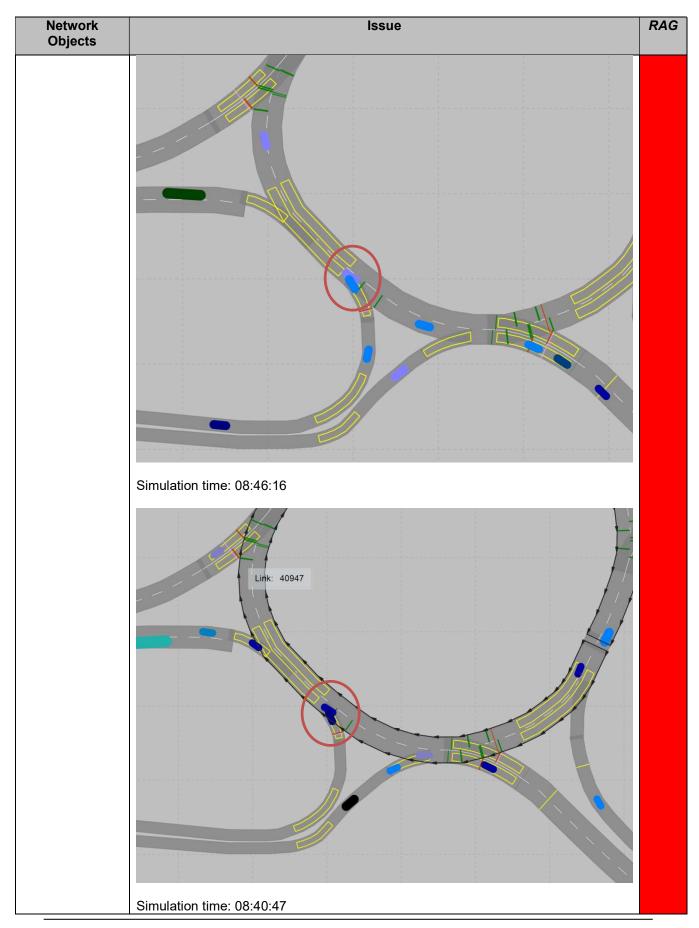

Technical Note 003_Thurrock VISSIM Review - East-West Base Model Issue 3.docx

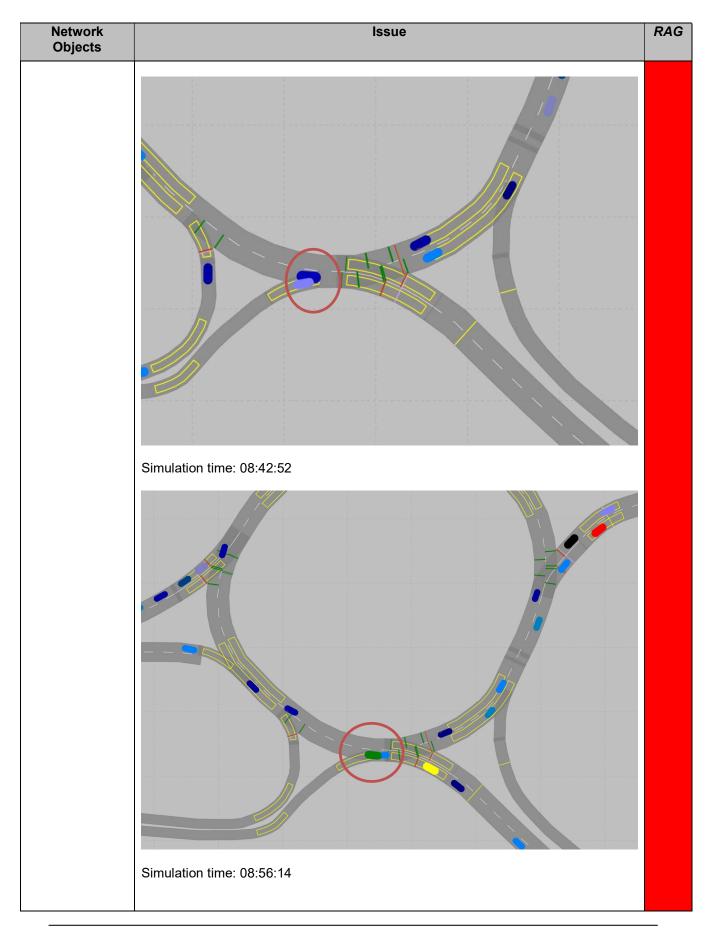

Technical Note 003_Thurrock VISSIM Review - East-West Base Model Issue 3.docx


Technical Note 003_Thurrock VISSIM Review - East-West Base Model Issue 3.docx


Technical Note 003_Thurrock VISSIM Review - East-West Base Model Issue 3.docx


Technical Note 003_Thurrock VISSIM Review - East-West Base Model Issue 3.docx


Technical Note 003_Thurrock VISSIM Review - East-West Base Model Issue 3.docx


Technical Note 003_Thurrock VISSIM Review - East-West Base Model Issue 3.docx

Technical Note 003_Thurrock VISSIM Review - East-West Base Model Issue 3.docx

Technical Note 003_Thurrock VISSIM Review - East-West Base Model Issue 3.docx

Network Objects	Issue	RAG
	Overlapping Vehicles at Chadwell Hill/River View/Brentwood Rd/Linford Rd Junction	
	Simulation time: 07:54:02	
Latent Demand	Number of vehicles are not able to deploy in the network within the evaluation period, in particular the PM peak. Base Models should not reflect any latent demand as the network extent should capture existing traffic conditions. If the latent demand is a direct result of observed congestion in the network the model should be extended appropriately to ensure full extent of queue and congestion is captured within the Base Model.	
Network Extent	It is noted that the model extent does not include A1089/Thurrock Parkway (ASDA) roundabout or the junction of A1012 / Devonshire Road, which has been identified in the strategic LTAM as being negatively impacted by LTC, and therefore capacity constraints at these locations and likely blocking back effects onto the area of the network covered by the microsimulation models have not been considered in the model.	
	Similarly, the model extent on the A13 corridor does not take into account any interaction with M25 J30 to the west and A13/Orsett Cock junction to the East.	
	Whilst the above may not be of concern in the base model, increased forecast demand resulting in extended queues in the WB and EB directions at M25 J30 and A13/Orsett Cock junctions respectively will need to be reviewed carefully to understand if this could have a material impact on the East-West microsimulation model network operation.	
LMVR and Model Validation	It has not been possible to undertake a full review of the LMVR and model outputs due to the number of outstanding issues highlighted in this technical note. A detailed review of the LMVR and modelled outputs will be undertaken once issues highlighted in this technical note have been appropriately addressed.	

Technical Note 003_Thurrock VISSIM Review - East-West Base Model Issue 3.docx

4. Summary

- 4.1. The third review has focused on the base microsimulation model, rather than the complete review of the LMVR and accompanying model outputs at this time.
- 4.2. The RAG outlines a number of key areas that still remain a concern and as such should be updated within the next issue of the model prior to model agreement by the Council.
- 4.3. Through further discussions with the Council, Daneholes and the Marshfoot/A1089 junction is a particular concern regarding any model forecasting and as such the elements identified above should be updated.
- 4.4. It is therefore required that all the issues are rectified to create a robust model that can be used as suitable evidence for the assessment and impact on the network within the Council as a result of the opening of the LTC.

Technical Note 003_Thurrock VISSIM Review - East-West Base Model Issue 3.docx

Thurrock Council Comments on Applicant's Submissions at Deadline 1 and 2 (D1 & D2) – Lower Thames Crossing TRO10032-003072-915 Localised Traffic Modelling – Summary Review – Appendix E

Lower Thames Crossing

Annex 5 Review of Do Minimum and Do Something Orsett Cock VISSIM Models

Job Name:	Orsett Cock Microsimulation Modelling
Job No:	332510911
Note No:	TN004
Date:	August 2023
Prepared By:	Zoltan Tosaki
Subject:	Review and Correction of Orsett Cock Forecast Microsimulation Models

1. Introduction

- 1.1. Through earlier engagement with National Highways the Council signed off the Base Year Orsett Cock microsimulation model. Following that the Council was issued with provisional forecast models in September 2022 (version 1.5) Do Minimum without LTC and Do Something representing the interchange between LTC / A1089 / A13 and the Orsett Cock interchange.
- 1.2. The models have been audited by the Council. A number of critical errors were identified. The Council has sought to prepare a corrected version of the forecast model version 1.5 to reflect more accurately network operation.

2. Network Coding Corrections

- 2.1. This document describes the network coding changes made by the Council with the models provided. The Council would request that the applicant uses this corrected version 1.5 forecast microsimulation model and the further changes that the Council would require would be for the applicant to use the updated demand matrices from LTAM CM49 for the DM model and LTAM CS72 for the DS model as well as extend the link lengths to resolve the latent demand issues raised by the Council.
- 2.2. The corrections presented in Table 2 have been assigned a Red/Amber/Green (RAG) status as defined in Table 1.

RAG Category	Description
Comments	Findings noted as part of the model audit process that may require consideration and amendment however not deemed to have a material impact on the overall operation or outputs derived from the model.
Recommendations /Additional Information required	These observations constitute of suggested recommendations as part of the model audit process and request for supporting evidence made by the reviewer to provide assurance that best modelling practice has been adhered to and therefore the modelling outputs are reliable.
Critical Issues	Issues in the model that require corrective action as these are deemed to have an impact on the operation of the model and associated outputs.

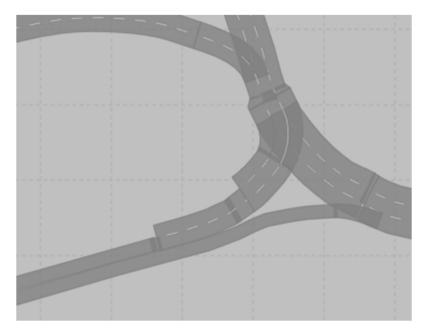
Table 1: RAG Review Categorisation

TN - Correction of Orsett Cock Vissim Model v1 5.docx

Table 2: Do Minimum and Do Something Network Coding Corrections

No.	Scenario(s)	Difference	Description	Impacted network objects	Reference	RAG
10.	Scenario(3)		It is good practive to keep only one edge through the junction for every movement. In the model received over 120 edges were open, creating competing routes through the junction. This increases convergence times and creates unrelistic movements.		Kelerence	NAC
1	DM and DS	Orsett Cock junction edge closures	Number of open edges reduced to 36 in the DM and 37 in the DS scenarios.	Node 1 edges		Red
2	DM and DS	A1013 EB approach	Flare length was reduced to more accurately reflect available road space.	Links 29, 74	Ref2	Red
3	DM	Lane use in the circulatory carriageway	Lane allocation was updated on the main circulatory carriageway between the A13 eastbound off-slip and Brentwood Rd arm to reflect constructed lane allocation.		Ref3	Amber
4	DM and DS	Change in link behaviour	Link behaviour for the Orsett Cock junction main circulatory carriageway updated from 'Urban (merge)' behaviour to 'Urban (motorised).	OC circulatory links		Red
5	DS	Changes to merge locations	Changes to merge locations between the new LTC network and the A13 or the A13 and the LTC	,	<u>Ref4</u>	Red
6	DS	Changes to diverge locations	Changes to entry diverge locations within the model		<u>Ref4</u>	Red
7	DS	Reduced speed areas updated	Reduced speed areas updated on slip roads		<u>Ref4</u>	Red
8	DS	Signal control updated	VISVAP has been included at Orsett Cock gyratory to better replicate signal control at Orsett dependent on traffic demand		<u>Ref4</u>	Amber

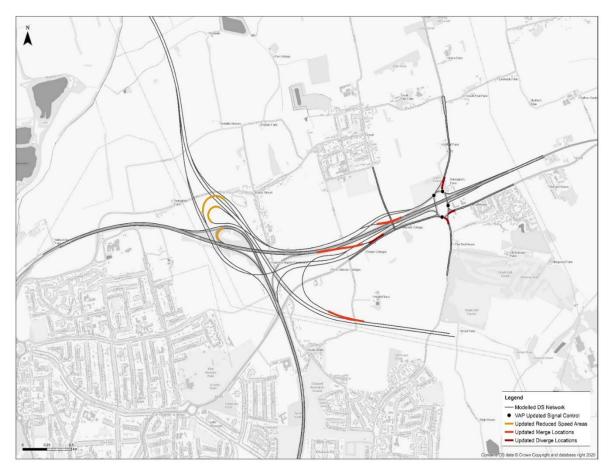
TN - Correction of Orsett Cock Vissim Model v1 5.docx



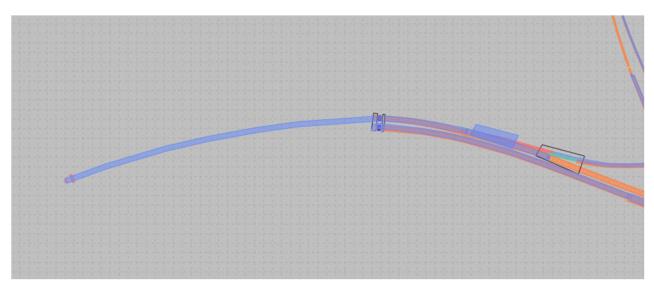
No	[compris(c)	Difference	Description	Impacted network	Deference	DAC
No.	Scenario(s)	Difference	Description	objects	Reference	RAG
0	DS	Link resolution and	Links are adjusted to follow road design			Croon
9	03	accuracy	more accurately - across the whole model			Green
			A13 EB approach extended by appx 700			
		A13 EB approach	metres to ensure that traffic has sufficient		5.640	
10	DS	extended	distance to prepare for upcoming diverge		<u>Ref10</u>	Red
		A13 WB - LTC NB				
		merge coding	A13 WB - LTC NB merge coding updated to			
11	DS	updated	provide more realistic merging behaviour	Node 132		Red
			RSA length updated to avoid them running			
			through connector start or end points. This			
		Reduced speed areas	is a lesser known but critial error in VISSIM	All reduced speed		
		for Orsett Cock	where vehicles does not pick up (or drop	areas in the OC		
12	DM and DS	junction	off) the reduced speed in the bend	junction		Red
13	DS	Node 119 adjusted	Node did not include diverge point			Red
			While it is not strictly required, nodes were			
		Nodes added to	added to 9 diverge point in the network			
14	DS	diverge points	for a more robust node/edge definition			Green
			Vehicle route closure is added to prevent			
			vehicles to use the A13 WB offslip - Orsett			
15	DS	Vehicle route closure	Cock - A12 EB onslip route		<u>Ref15</u>	Red
			A pegasus crossing is part of the design on			
			A1013 w/o Rectory Road, which is not			
16	DS	Pegasus crossing	included in the design.			Amber

TN - Correction of Orsett Cock Vissim Model v1 5.docx

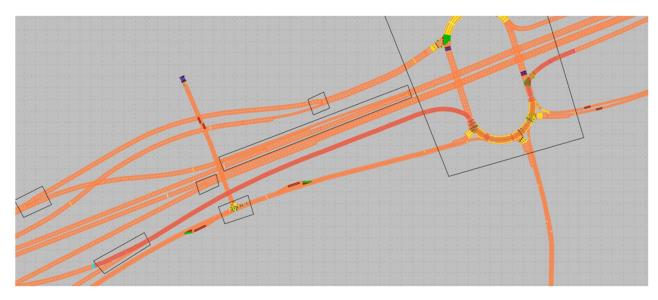
Ref 2


Ref 3

	Offside lane to:	Middle lane to:	Nearside lane to:
2030 DM original	A13(W)	Brentwood Rd	A1013 (E)
2030 DM original	A128	128 A1013 (W) A1013	
2030 DM amended	A13(W)	A 1012 (\A/)	Brentwood Rd
2030 Divi amended	A128	A1013 (W)	A1013 (E)


TN - Correction of Orsett Cock Vissim Model v1 5.docx

Ref 4


Ref 10

TN - Correction of Orsett Cock Vissim Model v1 5.docx

Ref 15

3. Summary

- 3.1. The review has focused on the forecast Do Minimum and Do Something microsimulation models for Orsett Cock. Version 1.5 issued by the applicant to the Council in September 2022 was used as the basis for the review.
- 3.2. The RAG table presented in this document outlines a number of key areas that need to be addressed and the Council has provided corrected network coding to facilitate this. The Council would also request further changes, which include the use of the updated demand matrices from LTAM CM49 for the DM model and LTAM CS72 for the DS model as well as extend the link lengths to resolve the latent demand issues raised by the Council.

TN - Correction of Orsett Cock Vissim Model v1 5.docx

Thurrock Council Comments on Applicant's Submissions at Deadline 1 and 2 (D1 & D2) – Lower Thames Crossing TRO10032-003072-915 Localised Traffic Modelling – Summary Review – Appendix E

Lower Thames Crossing

Annex 6 The Manorway VISSIM Modelling, Comparison of Model Documentation September 2022 vs July 2023

Lower Thames Crossing

The Manorway VISSIM Modelling Comparison of VISSIM Model Documentation. September 2022 vs July 2023

On behalf of Thurrock Council

Project Ref: 332510911/001 | Rev: AA | Date: August 2023

Registered Office: Buckingham Court Kingsmead Business Park, London Road, High Wycombe, Buckinghamshire, HP11 1JU Office Address: Caversham Bridge House, Waterman Place, Reading, Berkshire RG1 8DN T: +44 (0)118 950 0761 E: Reading.uk@stantec.com

Document Control Sheet

Project Name:	Lower Thames Crossing
Project Ref:	Stantec LTC Review of Modelling Document
Report Title:	Orsett Cock and The Manorway Modelling
Doc Ref:	
Date:	August 2023

	Name	Position	Signature	Date
Prepared by:	Grant Paterson	Principal Transport Planner	GP	01/08/2023
Reviewed by:	Nadia Lyubimova	Director	NL	17/08/2023
Approved by:	Nadia Lyubimova	Director	NL	17/08/2023
For and on behalf of Stantec UK Limited				

	Revision	Date	Description	Prepared	Reviewed	Approved
ľ						

This report has been prepared by Stantec UK Limited ('Stantec') on behalf of its client to whom this report is addressed ('Client') in connection with the project described in this report and takes into account the Client's particular instructions and requirements. This report was prepared in accordance with the professional services appointment under which Stantec was appointed by its Client. This report is not intended for and should not be relied on by any third party (i.e. parties other than the Client). Stantec accepts no duty or responsibility (including in negligence) to any party other than the Client and disclaims all liability of any nature whatsoever to any such party in respect of this report.

Contents

1 Introduction			
	1.1	Purpose of Document	1
	1.2	NH Document provision	1
2 Appendix D – Manorway Forecasting Report		endix D – Manorway Forecasting Report	2

this page is intertionally black

1 Introduction

1.1 Purpose of Document

1.1.1 In support of continuing work for Thurrock Council, Stantec has been commissioned to review the July 2023 documentation relating to VISSIM microsimulation modelling outputs. Transport models have been developed by National Highways (NH) and their consultant Jacobs with Stantec undertaking subsequent reviews and appraisal testing over the period of this study. This document focuses on the July 2023 reporting provided by NH for The Manorway and compares it to the reporting provided by Nh to the Council in October 2022 using v8.0 of the model.

1.2 NH Document provision

- 1.2.1 At Deadline 1 NH have provided the following documents:
 - Localised Traffic Modelling Report (<u>REP1-187</u>)
 - Localised Traffic Modelling Appendix D Manorway Forecasting Report (<u>REP1-190</u>)

2 Appendix D – Manorway Forecasting Report

- 2.1.1 Stantec have been provided with the following documentation (9.15 Localised Traffic Modelling Infrastructure Planning (Examination Procedure) Rules 2010 Volume 9, July 2023) from NH (<u>REP1-190</u>). This document has been compared with the previously submitted document Lower Thames Crossing Manorway 2030 & 2045 Operational Appraisal Design Release 4.3 Operational Modelling, September 2022.
- 2.1.2 The July 2023 document has been prepared to set out the localised traffic modelling work completed by the Applicant during the development of the A122 Lower Thames Crossing (the Project), and to introduce additional information into the Examination process. This differs from the September 2022 document which is designed to present the findings from the traffic operation appraisal undertaken for Design Release 4.3 (DR4.3) of Manorway roundabout on the A13, A1014 The Manorway/ The Sorrells junction and Sorrells roundabout on the A1014, near DP World Gateway Port.
- 2.1.3 The 2022 report focuses upon the operation modelling analysis based on the VISSIM microsimulation modelling. This includes the model scope, model development, results, sensitivity testing and a conclusion where NH describes the impact of the LTC scheme. Relative delay plots and sensitivity analysis of the models are summarised. The 2023 report is a broader document focusing on the traffic models employed, the approaches used, in addition to providing a summary of the action point request from respective council close to the scheme. Commentary is provided on the application of LTAM.
- 2.1.4 This chapter does not delve any further into the differences between the reports. Analysis has been undertaken to determine if the model results contained in each of the reports is consistent. Chapter 4 in each of the documents provide journey time analysis for the 2030 and 2045 Do Minimum and Do Something models. In all scenarios, the reported journey time results are consistent between the 2022 and 2023 documentation for the Manorway model.
- 2.1.5 The July 2023 report goes onto to provide tables presenting the Manorway results. A review has been undertaken to check whether these results match the results provided in Lower Thames Crossing 9.15 Localised Traffic Modelling, July 2023. Where a comparison can be made, both reports provide the same journey time results suggesting these are from the same version of the microsimulation model provided by NH to the Council in October 2022.
- 2.1.6 A base model has not been provided for this junction and so it is not feasible to sign off a validated base year model and is therefore not possible to judge whether the provided forecast models are sound.